<— | R^=<— |e-ij. Это все одно и то же.
* Вспомните, что спин — это аксиальный вектор и при отражении он переворачивается.
* Мы провели ось z' в плоскости xz и используем матричные элементы для R y (q). То же получилось бы и при другом выборе осей.
* Мы сейчас предполагаем, что механизм квантовой механики вам настолько знаком, что обо всем можно говорить на чисто физическом языке, не тратя времени на расписывание всех математических деталей. Но если то, что мы здесь говорим, вам не очень ясно, то обратитесь к концу этого параграфа, где приведены некоторые недостающие детали.
* Мы попытались на худой конец доказать, что компонента момента количества движения вдоль направления движения у частицы с нулевой массой должна быть, например, кратной h/2, а не h/3. Но даже приведя в действие всевозможные свойства преобразований Лоренца (и многое другое), мы с этим не справились. Может, этой не так. Надо было бы потолковать об этом с профессором Вигнером, который знает все о таких вещах.
* Прошу прощения! Этот угол имеет обратный знак по отношению к использовавшемуся в гл. 9, § 4.
** Как правило, момент количества движения атомной системы весьма удобно измерять в единицах h. Тогда можно говорить, что частица со спином 1 / 2 обладает по отношению к любой оси моментом количества движения ± 1 / 2 . И вообще, что z-компонента момента количества движения есть т. Не приходится все время повторять h.
* Для большей строгости все эти рассуждения нужно было бы провести для малых поворотов e. Раз каждый угол j представляет собой сумму некоторого числа n таких поворотов, j=ne, то R^ z (j)=[R z (e)] n , и общее изменение фазы в n раз превосходит изменение для малого угла 8 и поэтому пропорционально j.
* Точнее, мы определим R^ z (j) как поворот физической системы на -j вокруг оси z; это то же самое, что повернуть систему координат на +j.
** Мы всегда вправе выбрать ось z вдоль направления поля при условии, конечно, что его направление не меняется и что больше полей нет.
* В других книгах вы можете встретить формулы с другими знаками; вероятнее всего, в них используются углы, определенные по-иному.
* Кстати, вы можете доказать, что Q^ — это обязательно унитарный оператор, т. е. если он действует на |y>, приводя к |y>, умноженному на некоторое число, то это число должно иметь вид е i d , где d — вещественно. Это мелкое замечание, а доказательство основано на следующем наблюдении. Всякая операция наподобие отражения или поворота не приводит к потере каких-либо частиц, так что нормировки |y'> и |y> должны совпадать; отличаться они вправе только на множитель с чисто вещественной фазой в показателе.
Литература: А. Р. Эдмондс, Угловые моменты в квантовой механике, в кн. «Деформация атомных ядер», ИЛ, 1958.
Глава 16
МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ
§ 1. Электрическое дипольное излучение
§ 2. Рассеяние света
§ 3. Аннигиляция позитрония
§ 4. Матрица поворота для произвольного спина
§ 5. Измерения ядерного спина
§ 6. Сложение моментов количества движения
Добавление 1. Вывод матрицы поворота
Добавление 2. Сохранение четности при испускании фотона
§ 1. Электрическое дипольное излучение
В предыдущей главе мы развили представления о сохранении момента количества движения в квантовой механике и показали, как ими можно воспользоваться для предсказания углового распределения протонов при распаде L0-частицы. Теперь мы хотим добавить еще несколько иллюстраций тех следствий, которые вытекают из сохранения момента количества движения в атомных системах. Первым примером послужит излучение света атомом. Сохранение момента количества движения (наряду с другими обстоятельствами) определит поляризацию и угловое распределение испускаемых фотонов.
Пусть имеется атом в возбужденном состоянии с определенным моментом количества движения, скажем со спином, равным 1; он, излучая фотон, переходит к состоянию с моментом нуль при более низкой энергии. Задача в том, чтобы представить угловое распределение и поляризацию фотонов. (Она очень похожа на задачу о распаде L0-частицы, но только теперь спин равен не 1/2, a 1.) Раз у возбужденного состояния спин равен единице, то для z-компоненты момента имеются три возможности. Значение т может быть или +1, или 0, или -1. Возьмем для примера m=+1. (Если мы разберемся в этом примере, то справимся и с другими.) Предположим, что момент количества движения атома направлен по оси +z (фиг. 16.1, а), и спросим, какова амплитуда того, что он излучит вверх по оси гправополяризованный по кругу свет, так что в результате его момент станет равным нулю (фиг. 16.1, б).
Фиг. 16.1. Атом с т = +1 излучает вдоль оси +z правый фотон.
Ответа на этот вопрос мы не знаем. Но зато мы знаем, что правополяризованный по кругу свет уносит вдоль направления своего распространения одну единицу момента количества движения. Значит, после излучения фотона положение станет таким, как показано на фиг. 16.1, б, т. е. атом остался с нулевым моментом относительно оси z, поскольку мы предположили, что низшее состояние атома имеет спин нуль. Обозначим амплитуду такого события буквой а. Точнее, а будет обозначать амплитуду излучения фотона в некоторый узкий телесный угол DW, окружающий ось z, за время dt. Заметьте, что амплитуда излучения левого фотона в том же направлении равна нулю. У такого фотона момент относительно оси z был бы равен -1, а так как у атома он равен нулю, то и в сумме получилось бы -1, так что момент не сохранился бы. Точно так же, если спин атома вначале направлен вниз (-1 вдоль оси z), то он может излучать в направлении оси +z только левые фотоны (фиг. 16.2).
Фиг. 16.2. Атом с m=-1 излучает вдоль оси z левый фотон.
Амплитуду такого события обозначим буквой b (снова имея в виду амплитуду излучения фотона в некоторый узкий телесный угол DW). С другой стороны, если атом находится в состоянии с m=0, он вообще не сможет испустить фотон в направлении +z, потому что у фотона момент количества движения относительно его направления распространения может быть только +1 или -1.