Выбрать главу

Расширим рассуждения § 4 на систему со спином j, которую будем считать составленной из 2/ объектов со спином 1/2. Состоя­ние с m=j имело бы вид | + + + . . . +> (с j плюсами). Для m=j-1 было бы 2j членов типа | + + . . . + + ->, | + + . . . +- +>и т. д. Рассмотрим общий случай, когда имеет­ся r плюсов и s минусов, причем r+s=2j. При повороте вокруг оси r от каждого из r плюсов появится множитель e+ij/2. В итоге фаза изменится на i(r/2-s/2)j. Мы видим, что

m=(r-s)/2 . (16.59)

Как и в случае J=3/2, каждое состояние с определенным т должно быть суммой всех состояний с одними и теми же r и s, взятых со знаком плюс, т. е. состояний, отвечающих всевозмож­ным перестановкам с r плюсами и s минусами. Мы считаем, что вам известно, что всего таких сочетаний есть (r+s)!/r!s!. Чтобы нормировать каждое состояние, надо эту сумму разделить на корень квадратный из этого числа. Можно написать

где

Введем еще новые обозначения, они нам помогут в счете. Ну а поскольку мы уж определили состояния при помощи (16.60), то два числа r и s определяют состояние ничуть не хуже, чем j и m. Мы легче проследим за выкладками, если обозначим

где [см.. (16.61)]

r = j+m, s = j-т.

Далее, (16.60) мы запишем, пользуясь специальным обозна­чением

Обратите внимание, что показатель степени в общем множителе мы изменили на +1/2. Это оттого, что внутри фигурных скобок в (16.60) стоит как раз N=(r+s)!/r!s! слагаемых. Если сопоста­вить (16.63) с (16.60), то ясно, что

— это краткая запись выражения

где N — количество различных слагаемых в скобках. Эти обо­значения удобны тем, что каждый раз при повороте все знаки плюс вносят один и тот же множитель, так что в итоге он полу­чается в r-й степени. Точно так же все знаки минус дадут некоторый множитель в s-й степени, в каком бы порядке эти знаки ни стояли.

Теперь положим, что мы повернули нашу систему вокруг оси у на угол q. Нас интересует. Оператор Ry(q), дей­ствуя на каждый |+>, дает

где С=cosq/2 и S=sin q/2. Когда же Ry(q) действует на | ->, это приводит к

Так что искомое выражение равно

Теперь надо возвысить биномы в степень и перемножить. По­явятся члены со всеми степенями |+ у от нуля до r+s. Посмот­рим, какие члены дадут r'-ю степень |+ ). Они всегда будут сопровождаться множителем типа |->s', где s'=2j-r'. Соберем их вместе. Получится сумма членов типа |+>r' |->s' с численными коэффициентами Аr' , куда входят коэффициенты биномиального разложения вместе с множителями С и S. Урав­нение (16.65) тогда будет выглядеть так:

Теперь разделим каждое Аr'на множитель [(r'+s')\lr'!s'!]l/2 и обозначим частное через Вr. Тогда (16.66) превратится в

[Можно просто сказать, что требование, чтобы (16.67) совпадало с (16.65), определяет Br]

Если так определить Вr' , то оставшиеся множители в правой части (16.67) будут как раз состояниями. Итак, имеем

где s' всегда равняется r+s-r'. А это, конечно, означает, что коэффициенты Вr'и есть искомые матричные элементы

Теперь, чтобы найти Br', остается немного: лишь про­биться через алгебру.

Сравнивая (16.67) с (16.65) и вспоминая, что r'+s'=r+s, мы видим, что Br' — это просто коэффициент при ar'bs'в вы­ражении

Осталась лишь нудная работа разложить скобки по биному Ньютона и собрать члены с данными степенями а и b. Если вы все это проделаете, то увидите, что коэффициент при аr'bs' в (16.70) имеет вид

Сумма берется по всем целым k, при которых аргументы факто­риалов больше или в крайнем случае равны нулю. Это выраже­ние и есть искомый матричный элемент.

В конце надо вернуться к нашим первоначальным обозначе­ниям j, m и m', пользуясь формулами

r=j+-m, r'=j+m', s=j-m, s'=j-m'. Проделав эти подстановки, получим уравнение (16.34) из § 4.

Добавление 2. Сохранение четности при испускании фотона

В § 1 мы рассмотрели испускание света атомом, который переходит из возбужденного состояния со спином 1 в основное состояние со спином 0. Если спин возбужденного состояния на­правлен вверх (m=+1), то атом может излучить вверх вдоль оси +z правый фотон или вдоль оси -z левый. Обозначим эти два состояния фотона |Rвв> и |Lвн>. Ни одно из них не обладает определенной четностью. Если оператор четности обозначить

Что же тогда будет с нашим прежним доказательством, что атом в состоянии с определенной энергией должен иметь опре­деленную четность, и с нашим утверждением, что четность в атомных процессах сохраняется? Разве не должно конечное состояние в этой задаче (состояние после излучения фотона) иметь определенную четность? Да, должно, если только мы рас­смотрим полное конечное состояние, в которое входят амплитуды излучения фотонов под всевозможными углами. А в § 1 мы рассматривали только часть полного конечного состояния.

Если вы хотите, можно рассмотреть только конечные состоя­ния, у которых действительно определенная четность. Напри­мер, рассмотрим конечное состояние |yk>, у которого есть некоторая амплитуда а оказаться правым фотоном, движу­щимся вдоль оси +z, и некоторая амплитуда b оказаться левым фотоном, движущимся вдоль оси -z. Можно написать

Оператор четности, действуя на это состояние, дает

Это состояние совпадает с ±|yк> либо при b=a, либо при b=-a. Так что конечное состояние с положительной чет­ностью таково:

а состояние с отрицательной четностью

Далее, мы хотим рассмотреть распад возбужденного состоя­ния с отрицательной четностью на основное состояние с положительной четностью и на фотон. Если четность должна сохра­ниться, то конечное состояние фотона должно иметь отрица­тельную четность. Оно обязано быть состоянием (16.75). Если амплитуда того, что будет обнаружено | Rвв>, есть a, то ампли­туда того, что будет обнаружено | Lвн>, есть -a.