Выбрать главу

Теперь обратите внимание на то, что получается, если мы проводим поворот на 180° вокруг оси у. Начальное возбужден­ное состояние атома становится состоянием с m=-1 (соглас­но табл. 15.2, стр. 129, знак не меняется). А поворот конечного состояния дает

Сравнивая это с (16.75), мы увидим, что при выбранной нами четности конечного состояния амплитуда того, что при началь­ном состоянии с m=-1 будет получен левый фотон, идущий в направлении +z, равна со знаком минус амплитуде того, что при начальном состоянии с m=+1 будет получен правый фотон, идущий в направлении -z. Это согласуется с результатами, полученными в § 1.

* Первоначально материал этого добавления входил в текст лекции, но потом мы поняли, что не стоит включать в нее такое подробное изложе­ние общего случая.

* Тем более, что большая часть работы уже проделана, раз у нас есть общая матрица поворота (16.35).

* Отдачей, которую испытал Ne 20* в первой реакции, можно пренеб­речь. Или, еще лучше, подсчитать и сделать поправку на нее.

* Детали вы найдете в добавлении, стр. 165.

* Мы не нормировали наши амплитуды и не умножали их на амплитуду распада в то или иное конечное состояние, но легко видеть, что наш результат верен, ибо, рассчитывая вторую из взаимоисключающих воз­можностей [см. (16.23)], мы получаем вероятность нуль.

* Заметьте, что мы всегда анализируем момент количества движения относительно направления движения частицы. Если бы мы стали интере­соваться моментом количества движения относительно других осей, нам пришлось бы учесть возможность «орбитального» момента количества движения — от члена pXr. Так, мы не вправе говорить, что фотоны вы­летают прямо из центра позитрония. Они могли вылететь, как два комка с обода вертящегося колеса. О таких подробностях не приходится заду­мываться, если проводить ось вдоль направления движения.

* При нашем нынешнем глубоком понимании мира нелегко ответить на вопрос—менее ли «материальна» энергия фотона, чем энергия элек­трона, ведь, как вы помните, все частицы ведут себя очень похоже. Един­ственное различие в том, что у фотона масса покоя равна нулю.

* Кое-кто может возразить, что все эти рассуждения неверны, по­тому что наши конечные состояния не обладают определенной четностью. В добавлении 2 в конце этой главы вы найдете другое доказательство, которое вас удовлетворит.

* Когда мы переводим х, у, z в -х, -у, -z, то можно подумать, что все векторы перевернутся. Это верно для полярных векторов, таких, как смещения и скорости, но не для аксиальных векторов наподобие момента количества движения, да и любых векторов, представляющих собой век­торное произведение двух полярных векторов. Компоненты аксиальных векторов при инверсии не меняются.

Глава 17

АТОМ ВОДОРОДА И ПЕРИОДИЧЕСКАЯ ТАБЛИЦА

§ 1. Уравнение Шредингера для атома водорода

§ 2. Сферически симметричные решения

§ 3. Состояния с угловой зависимостью

§ 4. Общее решение для водорода

§ 5. Волновые функции водорода

§ 6. Периодическая таблица

§ 1. Уравнение Шредингера для атома водорода

Самым замечательным успехом в истории квантовой механики было объяснение всех дета­лей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе кванто­вой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объ­яснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объясне­нии таинственных свойств химических элемен­тов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в простран­стве, следуя тем представлениям, которые были развиты в гл. 14.

Для полного описания атома водорода сле­довало бы учесть движения обеих частиц — как протона, так и электрона. В квантовой меха­нике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.

Мы сделаем еще и другое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивист­ской механики. Это потребует внесения неболь­ших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравне­нием Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты по­являются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия элек­трона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдви­нуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообра­зим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электро­на, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» момен­том количества движения) тоже не будет меняться. В очень хоро­шем приближении можно считать, что электрон движется в атоме водорода как частица без спина — его орбитальный момент ко­личества движения постоянен.

В этих приближениях амплитуда того, что электрон будет обнаружен в том или ином месте пространства, может быть пред­ставлена как функция положения электрона в пространстве и времени. Обозначим амплитуду того, что электрон будет обнаружен в точке х, у, z в момент t через y(x, у, z, t). Со­гласно квантовой механике, скорость изменения этой ампли­туды со временем дается гамильтоновым оператором, действую­щим на ту же функцию. Из гл. 14 мы знаем, что

где

Здесь m—масса электрона, а V (r)— потенциальная энергия электрона в лектростатическом поле протона. Считая на больших удалениях от протона V=0, можно написать

V=-e 2 /r.

Волновая функция y должна тогда удовлетворять уравнению

Мы хотим найти состояния с определенной энергией, по­этому попробуем поискать решения, которые бы имели вид

Тогда функция y(r) должна быть решением уравнения

где Е — некоторое постоянное число (энергия атома).

Раз потенциальная энергия зависит только от радиуса, то это уравнение лучше решать в полярных координатах.

Лапласиан в прямоугольных координатах определялся так: