Оглядываясь на уравнение (17.16), мы видим, что у сферически симметричного волнового уравнения могут существовать решения для связанных состояний лишь при энергиях
Допустимы только те энергии, которые составляют именно такую часть ридберга ЕR=me4/2h2, т. е. энергия n-го уровня равна
Кстати, ничего мистического в отрицательных энергиях нет. Они отрицательны просто потому, что когда мы решили писать V= -е2/r, то тем самым в качестве нуля энергии выбрали энергию электрона, расположенного вдалеке от протона. Когда он ближе, то его энергия меньше, т. е. ниже нуля. Энергия ниже всего (самая отрицательная) при n=1и возрастает к нулю с ростом п.
Еще до открытия квантовой механики экспериментальное изучение спектра водорода показало, что уровни энергии описываются формулой (17.24), где ЕR, как это следует из измерений, равно примерно 13,6 зв. Затем Бор придумал модель, которая привела к тому же уравнению (17.24) и предсказала, что ERдолжно равняться me4/2h2. Первым большим успехом теории Шредингера явилось то, что она смогла воспроизвести этот результат прямо из основного уравнения движения электрона.
Теперь, когда мы рассчитали наш первый атом, давайте рассмотрим свойства полученного нами решения. Объединим все выделившиеся по дороге факторы и выпишем окончательный вид решения:
где
и
Пока нас интересует главным образом относительная вероятность обнаружить электрон в том или ином месте, можно в качестве а1выбирать любое число. Возьмем, например, а1=1. (Обычно выбирают а1так, чтобы волновая функция была «нормирована», т. е. чтобы полная вероятность обнаружить электрон где бы то ни было в атоме была равна единице. Мы в этом сейчас не нуждаемся.)
В низшем энергетическом состоянии n=1 и
Если атом водорода находится в своем основном (наиболее низком энергетическом) состоянии, то амплитуда того, что электрон будет обнаружен в каком-то месте, экспоненциально падает с расстоянием от протона. Вероятнее всего встретить его вплотную близ протона. Характерное расстояние, на котором он встречается, составляет около одного r, или одного боровского радиуса rB.
Подстановка n=2 дает следующий более высокий уровень. В волновую функцию этого состояния входят два слагаемых. Она равна
Волновая функция для следующего уровня равна
Эти три волновые функции начерчены на фиг. 17.2.
Фиг. 17.2. Волновые функции трех первых состояний атома водорода с l=0. Масштабы выбраны так, чтобы полные вероятности совпадали.
Общая тенденция уже видна. Все волновые функции при больших r, поколебавшись несколько раз, приближаются к нулю. И действительно, число «изгибов» у ynкак раз равно n, или, если угодно, число пересечений оси абсцисс — число нулей — равно n-1.
§ 3. Состояния с угловой зависимостью
Мы нашли, что в состояниях, описываемых волновой функцией yn(r), амплитуда вероятности обнаружить электрон сферически симметрична; она зависит только от r — расстояния до протона. Момент количества движения таких состояний равен нулю. Теперь займемся состояниями, у которых какой-то момент количества движения имеется.
Можно было бы, конечно, просто исследовать чисто математическую задачу отыскания функций от r, q и j, удовлетворяющих дифференциальному уравнению (17.7), добавив только физическое условие, что единственно приемлемые для нас функции — это такие, которые при больших r стремятся к нулю. Так почти всегда и поступают. Но мы попробуем несколько сократить наш путь и воспользоваться тем, что мы уже знаем, именно тем, что нам известно, как амплитуды зависят от пространственных углов.
Атом водорода в том или ином состоянии — это частица с определенным «спином» j — квантовым числом полного момента количества движения. Часть этого спина возникает от собственного спина электрона, другая — от движения электрона. Поскольку каждая из этих частей действует (в очень хорошем приближении) независимо, то мы по-прежнему будем игнорировать спиновую часть и учтем только «орбитальный» момент. Впрочем, это орбитальное движение в точности подобно спину. Скажем, если орбитальное квантовое число есть l, то z-компонента момента количества движения может быть l, l-1, l-2, . . ., -l. (Мы, как обычно, измеряем все в единицах h.) Кроме того, по-прежнему годятся все наши матрицы поворота и прочие известные свойства. (Начиная с этого места, мы действительно начнем пренебрегать спином электрона; говоря о «моменте количества движения», мы будем иметь в виду только орбитальную его часть.)
Поскольку поле с потенциалом V, в котором движется электрон, зависит только от r, а не от q и не от j, то гамильтониан симметричен относительно поворотов. Отсюда следует, что и момент количества движения и все его проекции сохраняются. Это не есть особое свойство кулонова потенциала e2/r; оно справедливо при движении в любом «центральном поле» — поле, зависящем только от r.
Представим себе некоторое возможное состояние электрона; внутренняя угловая структура этого состояния будет определяться квантовым числом l. В зависимости от «ориентации» полного момента количества движения относительно оси z его проекция т на ось z может равняться одному из 2l+1 чисел между +l и -l. Пусть, например, m=1. С какой амплитудой электрон окажется на оси z на расстоянии r от начала? С нулевой. Электрон на оси z не может иметь какого-либо орбитального момента относительно этой оси. Но пусть тогда m=0. Вот это другое дело; теперь уже может появиться не равная нулю амплитуда того, что электрон окажется на оси z на таком-то расстоянии от протона. Обозначим эту амплитуду Fl(r). Это — амплитуда того, что электрон будет обнаружен на расстоянии r по оси z, когда атом находится в состоянии | l, 0>, т. е. в состоянии с орбитальным моментом l и его z-компонентой m=0. А если нам известно Fl(r), то известно все. Теперь уже в любом состоянии |l, m>мы можем узнать амплитуду ylm (r) того, что электрон обнаружится в произвольном месте атома. Как мы это узнаем? А вот следите. Пусть у нас есть атом в состоянии | l, m>. Какова амплитуда того, что электрон обнаружится под углом q, j и на расстоянии r от начала? Проведите новую ось z, скажем z', под этим углом (фиг. 17.3) и задайте вопрос: какова амплитуда того, что электрон окажется на новой оси z на расстоянии r?
Фиг. 17.3. Точка (х, у, z) лежит на оси z' системы координат х' , у', z'.
Мы знаем, что он не сможет оказаться на оси z', если только m — его z'-компонента момента количества движения — не равна нулю. Когда же m' =0, то амплитуда того, что электрон обнаружится на оси z', есть Fl(r). Значит, результат получится перемножением двух амплитуд. Первая это амплитуда того, что атом, находящийся в состоянии |l, т> относительно оси z, окажется в состоянии | l, m'=0> относительно оси z' . Умножьте эту амплитуду на Fl (r) и вы получите амплитуду yl,m(r) того, что электрон обнаружится в точке (r, q, j) относительно первоначальной системы осей.