где С21 — лапласиан, который действует на r1, координату первого электрона; С22 действует на r2, a r12=|r1-r2|. (Мы опять пренебрегаем спинами электронов.) Чтобы найти стационарные состояния и уровни энергии, следовало бы отыскать решения вида
Геометрическая зависимость заключена в f — функции шести переменных — одновременных положений двух электронов. Аналитического решения никто не знает, хотя решения для низших энергетических состояний и были найдены численными методами.
Когда электронов 3, 4 или 5, безнадежно пытаться получить точные решения. Поэтому было бы опрометчиво утверждать, что квантовая механика до конца объяснила периодическую таблицу. Но все же можно сказать, что даже с помощью довольно сомнительных приближений (и кое-какой последующей отделки) удается, по крайней мере качественно, понять многие химические свойства, проявляющиеся в периодической таблице.
Химические свойства атомов определяются в первую очередь их низшими энергетическими состояниями. Для отыскания этих состояний и их энергий мы воспользуемся следующей приближенной теорией. Во-первых, пренебрежем спином электрона, разве только что принцип запрета будет принят нами во внимание и мы будем считать, что каждое частное электронное состояние может быть занято только одним электроном. Это означает, что на одной орбите не может оказаться больше двух электронов — один со спином, направленным вверх, другой — вниз. Затем мы в первом приближении пренебрежем деталями взаимодействия электронов и будем считать, что каждый электрон движется в центральном поле, образуемом полями ядра и всех прочих электронов. Про неон, у которого 10 электронов, мы скажем, например, что каждый электрон в атоме неона испытывает влияние среднего потенциала ядра и оставшейся девятки электронов. Мы вообразим далее, что в уравнение Шредингера для каждого электрона мы подставляем V(r) — то же поле 1/r, но только видоизмененное за счет сферически симметричной плотности заряда, возникшей от остальных электронов.
В такой модели каждый электрон ведет себя как независимая частица. Угловые зависимости его волновой функции будут попросту такими же, какие были у атома водорода. Это будут те же s-состояния, р-состояния и т. п., и у них будут различные значения т. Раз V(r)больше не следует закону 1/r, то радиальная часть волновых функций слегка перекраивается, но качественно останется прежней, так что по-прежнему будет существовать радиальное квантовое число п. Энергии состояний тоже станут немного иными.
Н
Что же при таких представлениях у нас получится с водородом? У основного состояния водорода l=m=0и n=1; мы говорим, что у него электронная конфигурация 1s. Энергия равна -13,6 эв. Это значит, что для отрыва электрона от атома нужно 13,6 эв энергии. Ее называют «энергией ионизации», W1. Большая энергия ионизации означает, что оторвать электрон трудно, но водород может отнять электрон у другого атома, а потому он химически активен.
Не
Теперь обратимся к гелию. Оба электрона в гелии могут находиться в одном и том же нижнем состоянии (только у одного спин направлен вверх, у другого — вниз). В своем наинизшем состоянии электрон движется в поле с потенциалом, который при малых r походит на кулонов потенциал с Z=2, а при больших r — на кулонов потенциал с Z=1. В результате возникает «водородоподобное» 1s-состояние с несколько более низкой энергией. Оба электрона занимают одни и те же 1s-состояния (l=0, m=0). Наблюдаемая энергия ионизации (требуемая на отрыв одного электрона) равна 24,6 эв. Поскольку теперь «оболочка» 1s заполнена (больше двух электронов в нее не втиснешь), то практически не возникает тенденции уводить у других атомов электроны. Гелий химически инертен.
Li
Ядро лития имеет заряд 3. Состояния электрона опять будут водородоподобны, и тройка электронов займет три нижних уровня энергии. Два попадут в состояния 1s, a третий пойдет в состояние n=2. Но вот с l=0 или с l=1? В водороде у этих состояний энергия одна и та же, в других же атомах это не так, и вот по какой причине. Вспомним, что у 2s-состояния есть некоторая амплитуда того, что оно окажется вблизи ядра, а у 2р такой амплитуды нет. Это означает, что 2s-электрон как-то ощутит тройной электрический заряд ядра Li, а 2р-электрон останется там, где поле выглядит как кулоново поле единичного заряда. Добавочное притяжение понизит энергию 2s-состояния по сравнению с энергией 2р-состояния. Уровни энергии примерно окажутся такими, как показано на фиг. 17.8 (сравните с соответствующей диаграммой на фиг. 17.7 для водорода).
Поскольку разные l-состояния обладают разными энергиями, то каждое значение l отвечает некоторой подоболочке из 2(2l+1) возможных состояний (с различными т и различными направлениями спина). У всех у них энергия одинакова с точностью до некоторых слабых эффектов, которыми мы пренебрежем.
Фиг. 17.8. Схематическая диаграмма уровней анергии атомного электрона в присутствии других электронов. Масштаб иной, нежели па фиг. 17.7.
Значит, в атоме лития два электрона будут в 1s-состояниях, а один — в 2s-состоянии. Поскольку электрон в 2s-состоянии обладает более высокой энергией, чем электрон в 1s-состоянии, то его сравнительно легко удалить. Ионизационная энергия лития всего 5,4 эв, и он весьма активен химически.
Так постепенно перед вами развертывается вся картина; в табл. 17.2 мы привели список первых 36 элементов, отметив состояния, занимаемые электронами в основном состоянии каждого атома. Таблица дает энергию ионизации для наиболее слабо связанного электрона и количество электронов, занимающих каждую «оболочку», т. е. состояние с одним и тем же п.
Таблица 17.2 · ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ ПЕРВЫХ
36 ЭЛЕМЕНТОВ (число электронов в разных состояниях)
Поскольку разные l-состояния обладают разными энергиями, то каждое значение l отвечает некоторой подоболочке из 2(2l+1) возможных состояний (с различными m и различными направлениями спина). У всех у них энергия одинакова с точностью до некоторых слабых эффектов, которыми мы пренебрежем.
Бериллий похож на литий, только у него в 2s-состоянии находятся два электрона, а в заполненной 1s-оболочке тоже два.
От В до Ne
У бора 5 электронов. Пятый должен уйти в 2p-состояние. Всего бывает 2x3 = 6 разных 2p-состояний, поэтому можно продолжать добавлять по электрону, пока не дойдем до 8. Так мы доберемся до неона. Добавляя эти электроны, мы увеличиваем также Z, поэтому все электронное распределение все теснее и теснее стягивается к ядру и энергия 2p-состояний все снижается и снижается, К тому времени, когда мы достигнем неона, энергия ионизации возрастет до 21,6 эв. Неон легко своего электрона не отдает. У него к тому же больше нет пустых мест на орбите, которые можно заполнить, так что и чужие электроны ему не нужны. Стало быть, неон химически инертен. У фтора есть пустое место, попав на которое, электрон может оказаться в состоянии с низкой энергией, поэтому в химических реакциях фтор очень активен.