Операторное уравнение (18.2) допускает и другие возможности. Если мы представили себе некоторый оператор А, то его можно применить к любому состоянию |y> и он создаст новое состояние A^ |y>. Временами получаемое таким путем «состояние» может оказаться очень своеобразным — оно может уже не представлять собой никакой физической ситуации, с которой можно встретиться в природе. (Например, может получиться состояние, которое не нормировано на вероятность получить один электрон.) Иными словами, временами мы можем получить «состояния», которые есть математически искусственные образования. Эти искусственные «состояния» могут все равно оказаться полезными, чаще всего в каких-либо промежуточных вычислениях.
Мы уже приводили много примеров квантовомеханических операторов. Встречался нам оператор поворота R^у(q), который, взяв состояние |y>, делает из него новое состояние, представляющее собой старое состояние с точки зрения повернутой системы координат. Встречался оператор четности (или инверсии)
, создающий новое состояние обращением всех координат. Встречались и операторы sх, sуи szдля частиц со спином 1/2.
Оператор J^z определялся в гл. 15 через оператор поворота на малые углы e:
Это, конечно, попросту означает, что
В этом примере J^z|y> — это умноженное на h/ie состояние, получаемое тоща, когда вы повернете |y> на малый угол e и затем вычтете прежнее состояние. Оно представляет «состояние», являющееся разностью двух состояний.
Еще один пример. Мы имели оператор р^х, он назывался оператором (x-компоненты) импульса и определялся уравнением, похожим на (18.6). Если D^x(L) — оператор, который смещает состояние вдоль х на длину L, то р^хопределялось так:
где d — малое смещение. Смещение состояния |y> вдоль оси х на небольшое расстояние d дает новое состояние |y'>. Мы говорим, что это новое состояние есть старое состояние плюс еще новый кусочек
Операторы, о которых мы говорим сейчас, действуют на вектор состояния, скажем на |y>, являющийся абстрактным описанием физической ситуации. Это совсем не то, что алгебраические операторы, действующие на математические функции. Например, d/dx это «оператор», действие которого на f(x)создает из f(x)новую функцию f'(x)=df/dx. Другой пример алгебраического оператора — это С2. Можно понять, отчего в обоих случаях пользуются одним и тем же словом, но нужно помнить, что это разные типы операторов. Квантовомеханический оператор А действует не на алгебраическую функцию, а на вектор состояния, скажем на |y>. В квантовой механике употребляются и те и другие операторы, и часто, как вы увидите, в уравнениях сходного типа.
Когда вы впервые изучаете предмет, то все время надо иметь в виду эту разницу. А позднее, когда предмет вам станет ближе, вы увидите, что не так уж важно делать резкое различие между одними операторами и другими. И во многих книгах, как вы убедитесь, оба типа операторов обозначаются одинаково!
Теперь нам пора продвинуться вперед и узнать о многих полезных вещах, которые можно проделывать с помощью операторов. Но для начала небольшое замечание. Пускай у нас имеется оператор А^, матрица которого в каком-то базисе есть Aij=<i|A^|j>. Амплитуда того, что состояние A^|y> находится также в некотором другом состоянии |j>, есть <j|A^|y>. Имеет ли смысл комплексное сопряжение этой амплитуды? Вы, вероятно, сможете показать, что
где А^+(читается «А с крестом») это оператор, матричные элементы которого равны
A+ij=(Aji)*. (18.9)
Иначе говоря, чтобы получить i, j-и элемент матрицы А+, вы обращаетесь к j, i-му элементу матрицы А (индексы переставлены) и комплексно его сопрягаете. Амплитуда того, что состояние А^+|j> находится в состоянии |y>, комплексно сопряжена амплитуде того, что А^|y> находится в |j>. Оператор А^+ называется «эрмитово сопряженным» оператору А^. Многие важные операторы квантовой механики имеют специальное свойство: если вы их эрмитово сопрягаете, вы опять возвращаетесь к тому же оператору. Если В как раз такой оператор, то В^+=В^;его называют «самосопряженным», или «эрмитовым», оператором.
§ 2. Средние энергии
До сих пор мы в основном напоминали вам о том, что вы уже знаете. А теперь перейдем к новому. Как бы вы подсчитали среднюю энергию системы, скажем, атома? Если атом находится в определенном состоянии с определенной энергией и вы эту энергию измеряете, то вы получите определенную энергию Е. Если вы начнете повторять измерения с каждым из множества атомов, которые отобраны так, чтобы быть всем в одинаковом состоянии, то все измерения дадут вам Е, и «среднее» изо всех ваших измерений тоже, конечно, окажется Е.
Но что случится, если вы проделаете свои измерения над состоянием |y>, которое не является стационарным? Раз у системы нет определенной энергии, то одно измерение даст одну энергию, то же измерение над другим атомом в том же состоянии даст другую и т. д. Каким же окажется среднее всей серии измерений энергии?
На этот вопрос мы ответим, если возьмем проекцию состояния |y> на систему состояний с определенной энергией. Чтобы помнить, что это особый базис, будем обозначать эти состояния |hi>. Каждое из состояний |hi> обладает определенной энергией Ei, В этом представлении
Когда вы проделываете измерение энергии и получаете некоторое число Еi, вы тем самым обнаруживаете, что система была в состоянии |hi>. Но в каждом новом измерении вы можете получить новое число. Иногда вы получите E1, иногда Е2, иногда Е3и т. д. Вероятность, что вы обнаружите энергию E1? равна попросту вероятности обнаружить систему в состоянии |h1>, т. е. квадрату модуля амплитуды С1=<h1|y>. Вероятность обнаружить то или иное возможное значение энергии Eiесть
Pi=|Ci|2. (18.11)
Как же связать эти вероятности со средним значением всей последовательности измерений энергий? Вообразим, что мы получили ряд результатов измерений, например E1, Е7, E11, Е9, E1, E10, Е7, E2, Е3, Е9, Е6, E4и т. д., всего тысяча измерений. Сложим все энергии и разделим на 1000. Это и есть среднее. Можно сложение проделать и покороче. Посчитайте, сколько раз у вас вышло E1(скажем, оно вышло N1раз), сколько раз вышло Е2(скажем, N2раз) и т. д. Ясно, что сумма всех энергий равна