Выбрать главу

В гл. 15 мы определили оператор р^хчерез оператор смещения D^x[см. формулу (15.27)]:

где d — малое смещение. Мы должны показать, что это экви­валентно нашему новому определению. В соответствии с тем, что мы только что доказали, это уравнение должно означать то же самое, что и

Но в правой части стоит просто разложение y (x+d) в ряд Тэйлора, а y (x+d)— то, что получится, если сместить состояние влево на б (или сдвинуть на столько же вправо систему коорди­нат). Оба наши определения р^ согласуются!

Воспользуемся этим, чтобы доказать еще кое-что. Пусть у нас в какой-то сложной системе имеется множество частиц, которым мы присвоим номера 1, 2, 3, ... . (Для простоты остано­вимся на одномерном случае.) Волновая функция, описывающая состояние, является функцией всех координат х1: х2, x3,... . Запишем ее в виде y (x1, х2, х3, ...). Сдвинем теперь систему (вле­во) на d. Новая волновая функция

может быть записана так:

Согласно уравнению (18.65), оператор импульса состояния |y> (назовем его полным импульсом) равняется

Но это все равно, что написать

Операторы импульса подчиняются тому правилу, что пол­ный импульс есть сумма импульсов отдельных частей. Здесь, как видите, все чудесным образом переплетено и разные вещи взаимно согласуются.

§ 6. Момент количества движения

Для интереса рассмотрим еще одну операцию — операцию орбитального момента количества движения. В гл. 15 мы опре­делили оператор J^zчерез R^z(j) — оператор поворота на угол j вокруг оси z. Рассмотрим сейчас систему, описываемую всего лишь одной-единственной волновой функцией y(r), которая является функцией одних только координат и не учитывает того факта, что спин у электрона должен быть направлен либо вверх, либо вниз. Это значит, что мы собираемся пока пренебречь внутренним моментом количества движения и намерены ду­мать только об орбитальной части. Чтобы подчеркнуть разли­чие, обозначим орбитальный оператор L^zи определим его че­рез оператор поворота на бесконечно малый угол e формулой

(напоминаем: это определение применимо только к состоянию |y>, у которого нет внутренних спиновых переменных, а есть только зависимость от координат r: х, у, z). Если мы взглянем на состояние |y> из новой системы координат, повернутой во­круг оси z на небольшой угол e, то увидим новое состояние:

Если мы решили описывать состояние |y> в координатном представлении, т. е. с помощью его волновой функции y (r), то следует ожидать такого равенства:

Что же такое? А вот что. Точка Р (х, у) в новой системе коор­динат (на самом деле х', у', но мы убрали штрихи) раньше имела координаты x-ey и y+ex (фиг. 18.2).

Фиг. 18.2. Поворот осей во­круг оси z на малый угол e.

Поскольку амплитуда того, что электрон окажется в точке Р, не меняется от поворота систе­мы координат, то можно писать

(напоминаем, что e — малый угол). Это означает, что

Это и есть наш ответ. Обратите, однако, внимание, что это определение эквивалентно такому:

Или, если вернуться к нашим квантовомеханическим операто­рам, можно написать

Эту формулу легко запомнить, потому что она похожа на знако­мую формулу классической механики: это z-компонента вектор­ного произведения

L=rXp. (18.72)

Одна из забавных сторон манипуляций с операторами за­ключается в том, что многие классические уравнения переносятся в квантовомеханическую форму. А какие нет? Ведь должны же быть такие, которые не получаются, потому что если бы все пов­торялось, то в квантовой механике не было бы ничего отличного от классической, не было бы новой физики.

Вот вам уравнение, которое отличается. В классической фи­зике

хрхxх=0.

А что в квантовой механике?

Подсчитаем это в x-представлении. Чтобы было видно, что мы делаем, приложим это к некоторой волновой функ­ции y(x). Пишем

или

Вспомним теперь, что производные действуют на всё, что справа. Получаем

Ответ не нуль. Вся операция попросту равнозначна умножению на -h/i:

Если бы постоянная Планка была равна нулю, то квантовые и классические результаты стали бы одинаковыми и не пришлось бы нам учить никакой квантовой механики!

Отметим, что если два каких-то оператора А и В, взятые в сочетании

не дают нуля, то мы говорим, что «операторы не перестановоч­ны», или «операторы не коммутируют». А уравнение наподо­бие (18.74) называется «перестановочным соотношением». Вы можете сами убедиться, что перестановочное соотношение для pхи у (или коммутатор рхи у) имеет вид

Существует еще одно очень важное перестановочное соотно­шение. Оно относится к моментам количества движения. Вид его таков:

Если вы хотите приобрести некоторый опыт работы с операто­рами x^ и p^, попробуйте доказать эту формулу сами.

Интересно заметить, что операторы, которые не коммути­руют, можно встретить и в классической физике. Мы с этим уже сталкивались, когда говорили о поворотах в пространстве. Если вы повернете что-нибудь, например книжку, сперва на 90° вокруг оси х, а затем на 90° вокруг оси у, то получится совсем не то, что было бы, если бы сначала вы повернули ее на 90° вокруг оси у, а после на 90° вокруг оси х. Именно это свойство пространства и ответственно за уравнение (18.75).

§ 7. Изменение средних со временем

Теперь мы познакомим вас с еще одной интересной вещью: вы узнаете, как средние изменяются во времени. Представим на минуту, что у нас есть оператор А^, в который время явным образом не входит. Имеется в виду такой оператор, как х^ или р^.

[А исключаются, скажем, такие вещи, как оператор внешнего потенциала V(x, t), меняющийся во времени.] Теперь предста­вим, что мы вычислили <A>ср в некотором состоянии |y>, т. е.

Как <A>ср будет зависеть от времени? Но почему оно вообще может зависеть от времени? Ну, во-первых, может случиться, что оператор сам явно зависит от времени, например, если он был связан с переменным потенциалом типа V(x, t). Но даже если оператор от t не зависит, например оператор А^=х^, то соответствующее среднее может зависеть от времени. Ведь среднее положение частицы может перемещаться. Но как может такое движение получиться из (18.76), если А от времени не за­висит? Дело в том, что во времени может меняться само состоя­ние |y>. Для нестационарных состояний мы часто даже явно отмечали зависимость от времени, записывая их как |y(t)>. Теперь мы хотим показать, что скорость изменения <A>ср