Выбрать главу

дается новым оператором, который мы обозначим. Напомним, что это оператор, так что точка над А вовсе не означает диффе­ренцирования по времени, а является просто способом записи

нового оператора, определяемого равенством

Задачей нашей будет найти оператор.

Прежде всего, нам известно, что скорость изменения со­стояния дается гамильтонианом. В частности,

Это всего-навсего абстрактная форма записи нашего перво­начального определения гамильтониана

Если мы комплексно сопряжем это уравнение, оно будет эквивалентно

Посмотрим теперь, что случится, если мы продифференцируем (18.76) по t. Поскольку каждое y зависит от t, мы имеем

Наконец, заменяя производные их выражениями (18.78) и (18.80), получаем

а это то же самое, что написать

Сравнивая это уравнение с (18.77), мы видим, что

Это и есть то интересное соотношение, которое мы обещали; и оно справедливо для любого оператора А.

Кстати заметим, что, если бы оператор А сам зависел от вре­мени, мы бы получили

Проверим (18.82) на каком-либо примере, чтобы посмотреть, имеет ли оно вообще смысл. Какой, например, оператор соот­ветствует х? Мы утверждаем, что это должно быть

Что это такое? Один способ установить, что это такое — перейти в координатное представление и воспользоваться алгебраи­ческим оператором

. В этом представлении коммутатор равен

Если вы подействуете всем этим выражением на волновую функцию y(х)и вычислите везде, где нужно, производные, вы в конце концов получите

Но это то же самое, что и

так что мы обнаруживаем, что

или что

Прелестный результат. Он означает, что если среднее значе­ние х меняется со временем, то перемещение центра тяжести равно среднему импульсу, деленному на массу т. Точно как в классической механике.

Другой пример. Какова скорость изменения среднего им­пульса состояния? Правила игры прежние. Оператор этой ско­рости равен

Опять все можно подсчитать в x-представлении. Напомним, что р^ обращается в d/dx, а это означает, что вам придется дифферен­цировать потенциальную энергию V ), но только во втором слагаемом. В конце концов остается только один член, и вы получаете

или

Опять классический результат. Справа стоит сила, так что мы вывели закон Ньютона! Но помните — это законы для операто­ров, которые дают средние величины. Они не описывают в де­талях, что происходит внутри атома.

Существенное отличие квантовой механики в том, что р^х^ не равно х^р^. Они отличаются на самую малость — на малень­кое число h. Но все поразительные сложности интерференции волн и тому подобного проистекают из того небольшого факта, что х^р^-р^х^ не совсем нуль.

История этой идеи тоже интересна. С разницей в несколько месяцев в 1926 г. Гейзенберг и Шредингер независимо оты­скали правильные законы, описывающие атомную механику. Шредингер изобрел свою волновую функцию y(х)и нашел уравнение для нее, а Гейзенберг обнаружил, что природу можно было бы описывать и классическими уравнениями, лишь бы хр-рх было равно h/i, чего можно было добиться, определив их с по­мощью особого вида матриц. На нашем теперешнем языке он пользовался энергетическим представлением и его матрицами. И то и другое — и матричная алгебра Гейзенберга и дифферен­циальное уравнение Шредингера — объясняли атом водорода. Несколькими месяцами позднее Шредингер смог показать, что обе теории эквивалентны — мы только что это видели. Но две разные математические формы квантовой механики были от­крыты независимо.

* Во многих книжках для используется один и тот же символ: физика в них одна и та же, да и удобнее все время обходиться без новых букв. А из контекста всегда ясно, что имеется в виду.

* Уравнение (18.38) не означает, что |a>=x|y> [ср. (18.35)]. Сокра­щать на <х| нельзя, потому что множитель х перед <x|y> для каждого состояния <х| имеет свое значение. Это — значение координаты электрона в состоянии |х> [см. (18.40)].

* Можно выразить это и иначе. Какую бы функцию (т. е. состояние) вы ни выбрали, ее всегда можно представить в виде линейной комбина­ции базисных состояний, являющихся состояниями с определенной энер­гией. Поскольку в этой комбинации присутствует примесь состояний с более высокими энергиями, то средняя энергия окажется выше энергии основного состояния.

* Элемент объема мы обозначаем dОбъем. Он попросту равен dxdydz, а интеграл берется от -Ґ до +Ґ по всем трем координатам.

Глава 19

УРАВНЕНИЕ ШРЕДИНГЕРА В КЛАССИЧЕСКОМ КОНТЕКСТЕ.

СЕМИНАР ПО СВЕРХПРОВОДИМОСТИ

§ 1. Уравнение Шредингера в магнитном поле

§ 2. Уравнение непрерывности для вероятностей

§ 3. Два рода импульсов

§ 4. Смысл волновой функции

§ 5. Сверхпроводимость

§ 6. Явление Мейсснера

& 7. Квантование потока

§ 8. Динамика сверхпроводимости

§ 9. Переходы Джозефсона

§ 1. Уравнение Шредингера в магнитном поле

Эту лекцию я читаю вам для развлечения. Захотелось посмотреть, что получится, если начать читать в немного ином стиле. В курс она не входит, и не думайте, что это попытка обучить вас в последний час чему-то новому. Я скорее воображаю, будто провожу семинар или будто делаю отчет об исследованиях перед более подготовленной аудиторией, перед людь­ми, которые в квантовой механике уже многое понимают. Основное различие между семинаром и регулярной лекцией в том, что на семинаре докладчик не приводит все стадии, всю алгебру выкладок. Он просто говорит: «Если вы проделаете то-то и то-то, то получится вот что», а в детали не входит. Вот и в этой лекции будут только высказываться идеи и приводиться результаты расчетов. А вы должны понимать, что вовсе не обязательно во всем немедленно и до конца разбираться, надо только верить, что если проделать все выкладки, то все так и полу­чится.

Но это не все. Главное — что об этом мне хочется говорить. Это такая свежая, актуальная, современная тема, что вполне законно вы­нести ее на семинар. Тема эта — классический аспект уравнения Шредингера, явление сверх­проводимости.