Для анализа такого контакта я обозначу амплитуду того, что электрон окажется на одной стороне, через y1, а того, что на другой,— через y2. В сверхпроводящем состоянии волновая функция y1 — это общая волновая функция всех электронов с одной стороны, а y2 — соответствующая функция с другой стороны. Эту задачу можно решать для сверхпроводников разного сорта, но мы ограничимся самым простым случаем, когда вещество по обе стороны одно и то же, — так что соединение самое простое и симметричное. И пусть пока никакого магнитного поля нет. Тогда связь между этими двумя амплитудами должна быть такой:
Постоянная К характеризует данный переход. Если бы К была равна нулю, то эта пара уравнений попросту описывала бы наинизшее энергетическое состояние (с энергией U) каждого сверхпроводника. Но обе стороны связаны амплитудой К, выражающей возможность утечки из одной стороны в другую (это как раз известная нам по двухуровневым системам амплитуда «переброса»). Если обе стороны одинаковы, то U1 будет равно U2, и я имею право их просто вычесть. Но теперь предположим, что мы подсоединили две сверхпроводящие области к двум полюсам батарейки, так что к переходу оказалась приложенной разность потенциалов V. Тогда U1-U2=qV. Для удобства я могу выбрать нуль энергии посредине между U1 и U2, и тогда уравнения обратятся в
Это стандартные уравнения двух связанных квантовомеханических состояний. На этот раз давайте проанализируем их по-иному. Сделаем подстановки:
где q1 и q2— фазы по обе стороны контакта, a r1и r2— плотности электронов в этих двух точках. Вспомним, что на практике r1 и r2 почти точно совпадают друг с другом и равны r0 — нормальной плотности электронов в сверхпроводящем материале. Если вы теперь подставите эти формулы для y1 и y2 в (19.40) и приравняете вещественные части вещественным, а мнимые — мнимым, то получится четверка уравнений (для краткости обозначено q2-q1=d):
Первая пара уравнений говорит, что r1=-r2 «Но,— скажете вы,— они ведь обе должны быть равны нулю, раз r1и r2 обе постоянны и равны r0». Не совсем. Эти уравнения описывают не все. Они говорят, какими были бы r1 и r2, если бы не было добавочных электрических сил за счет того, что нет баланса между электронной жидкостью и фоном положительных ионов. Они сообщают, как начали бы меняться плотности, и поэтому описывают тот ток, который начал бы течь. Этот ток, текущий от стороны 1 к стороне 2, был бы как раз равен r1(или -r2), или
Такой ток вскоре зарядил бы сторону 2, если можно было бы забыть, что обе стороны соединены проводами с батареей. Однако он не зарядит область 2 (и не разрядит область 1), потому что возникнут токи, которые выровняют потенциал. В наши уравнения эти токи от батареи не входят. Если бы их добавить, то r1 и r2 оставались бы фактически постоянными, а ток через переход определялся бы формулой (19.44).
Поскольку r1 и r2 действительно остаются постоянными и равными r0, давайте положим 2Kr0/h=J0и напишем
J=J0sind. (19.45)
Тогда J0, подобно К, есть число, характеризующее данный переход.
Другая пара уравнений (19.43) дает нам q1и q2. Нас интересует разность d=q2-q1, которую мы хотим подставить в (19.45); из уравнений же мы имеем
Это значит, что можно написать
где d0 — значение d при t=0. He забывайте также, что q — это заряд пары, q=2qe. В уравнениях (19.45) и (19.47) содержится важный результат — общая теория переходов Джозефсона.
Так что же из них следует? Сначала приложим постоянное напряжение. Если приложить постоянное напряжение V0, то аргумент синуса примет вид d0+(q/h)V0t. Поскольку h/q—число маленькое (по сравнению с обычными напряжениями и временами), то синус будет колебаться довольно быстро и в итоге никакой ток не пойдет. (Практически, поскольку температура не равна нулю, небольшой ток все же будет из-за проводимости «нормальных» электронов.) С другой стороны, если напряжение на переходе равно нулю, то ток может пойти! Если нет напряжения, то ток может равняться любой величине между +J0 и -J0 (в зависимости от того, каково значение d0). Но попробуйте приложить напряжение — и ток обратится в нуль. Это странное поведение недавно наблюдалось экспериментально.
Ток можно получить и другим способом: кроме постоянного напряжения — приложить еще и высокую частоту. Пусть
где v<<V. Тогда
Но при малых Dx
Разложив по этому правилу sind, я получу
Первый член в среднем дает нуль, но второй в нуль не обращается, если
Значит, если частота переменного напряжения равна (q/h)V0, то через контакт пойдет ток. Шапиро сообщил, что он наблюдал такой резонансный эффект.
Если вы просмотрите работы на эту тему, то заметите, что в них формула для тока часто записывается в виде
где интеграл берется по пути, ведущему через переход. Причина здесь в том, что если переход находится в поле векторного потенциала, то фаза амплитуды переброса видоизменяется так, как было объяснено вначале [уравнение (19.1)]. Если вы всюду включите такой сдвиг фазы, то получите нужные формулы.
Наконец, я хотел бы описать очень эффектный и интересный опыт по интерференции токов, проходящих через два перехода, который был недавно проделан. Мы привыкли встречаться в квантовой механике с интерференцией амплитуд от двух щелей. Сейчас мы будем иметь дело с интерференцией двух токов, текущих через два перехода между сверхпроводниками. Она вызывается различием в фазах, с которыми сливаются токи, прошедшие по двум разным путям. На фиг. 19.7 показано параллельное соединение двух переходов а и b между сверхпроводниками.
Фиг. 19.7. Два параллельных перехода Джозефсона.
Концы сверхпроводников Р и Q подключены к приборам, которыми мы измеряем ток. Внешний ток Jполн будет суммой токов через каждый из переходов. Пусть Jaи Jbэто токи через переходы, и пусть их фазы будут dаи db. Разность фаз волновых функций в точках Р и Q должна быть одинаковой, по какому бы пути вы ни пошли. На том пути, который следует через переход а, разность фаз между Р и Q равна dаплюс криволинейный интеграл от векторного потенциала вдоль верхнего пути:
Почему? Потому что фаза q связана с А уравнением (19.26). Если вы это уравнение проинтегрируете вдоль какого-то пути, то левая часть даст изменение фазы, которое тем самым как раз окажется пропорциональным криволинейному интегралу от А, что и написано. Изменение фазы по нижнему пути может быть записано подобным же образом: