§ 4. Оператор места
Каково среднее местоположение электрона в атоме? В данном состоянии |y> каково среднее значение координаты х? Разберем одномерный случай, а обобщение на трехмерный или на системы с большим числом частиц останется на вашу долю. Мы имеем состояние, описываемое функцией y (x), и продолжаем раз за разом измерять х. Что получится в среднем? Очевидно, ∫xP(x)dx, где Р(х)—вероятность обнаружить
электрон в небольшом элементе длины dx возле х. Пусть плотность вероятности Р(х) меняется с х так, как показано на фиг. 18.1.
Фиг. 18.1. Кривая плотности вероятности, представляющей локализованную частицу.
Вероятнее всего вы обнаружите электрон где-то возле вершины кривой. Среднее значение х тоже придется куда-то на область невдалеке от вершины, а точнее, как раз на центр тяжести площади, ограниченной кривой.
Мы видели раньше, что P(x)=| y (x)|2=y*(x) y(х), значит, среднее х можно записать в виде
Наше уравнение для <x>ср имеет тот же вид, что (18.18). Когда мы считали среднюю энергию, мы ставили между двумя y оператор
где
и смотрим, не удастся ли найти такой оператор х, чтобы он создавал состояние |a>, при котором уравнение (18.34) не противоречит уравнению (18.33). Иначе говоря, мы должны найти такое |a>, чтобы было
Разложим сперва <y|a> по x-представлению:
Сравним затем интегралы в (18.36) и (18.37). Вы видите, что в х-представлении (и только в этом представлении)
Воздействие на |y> оператора х^ для получения |a> равнозначно умножению y (x)=<x|y> на х для получения a (х)=<x|a>. Перед нами определение оператора х^ в координатном представлении.
(Мы не задавались целью получить x-представление матрицы оператора х^. Если вы честолюбивы, попытайтесь показать, что
Тогда вы сможете доказать поразительную формулу
т. е. что оператор х^ обладает интересным свойством: когда он действует на базисное состояние |x>, то это равнозначно умножению на х.)
А может, вы хотите знать среднее значение x2? Оно равно
Или, если желаете, можно написать и так:
где
Под x^2 подразумевается х^х^ — два оператора применяются друг за другом. С помощью (18.42) можно подсчитать <x2>ср, пользуясь каким угодно представлением (базисными состояниями). Если вам нужно знать среднее значение хn или любого многочлена по х, то вы легко это теперь проделаете.
§ 5. Оператор импульса
Теперь мы хотим рассчитать средний импульс электрона, опять начав с одномерного случая. Пусть Р(р)dp — вероятность того, что измерение приведет к импульсу в интервале между р и p+dp. Тогда