Обозначим теперь через <р|y> амплитуду того, что состояние |y> есть состояние с определенным импульсом |р>. Это та же самая амплитуда, которую в гл. 14, § 3, мы обозначали <имп.р|y>; она является функцией от р, как <x|y> является функцией от х. Затем мы выберем такую нормировку амплитуды, чтобы было
Тогда получится
что очень похоже на то, что мы имели для <x>ср.
При желании можно продолжить ту же игру, которой мы предавались с <x>ср. Во-первых, этот интеграл можно записать так:
Теперь вы должны узнать в этом уравнении разложение амплитуды <y|b> — разложение по базисным состояниям с определенным импульсом. Из (18.45) следует, что состояние |b> определяется в импульсном представлении уравнением
Иначе говоря, теперь можно писать
причем
где оператор р^ определяется на языке p-представления уравнением (18.47).
[И опять при желании можно показать, что матричная запись р^ такова:
и что
Выводится это так же. как и для х.
Теперь возникает интересный вопрос. Мы можем написать <р>ср так, как мы это сделали в (18.45) и (18.48); смысл оператора р^ в импульсном представлении нам тоже известен. Но как истолковать р^ в координатном представлении? Это бывает нужно знать, если у нас есть волновая функция y (x) и мы собираемся вычислить ее средний импульс. Позвольте более четко пояснить, что имеется в виду. Если мы начнем с того, что зададим <p>cp уравнением (18.48), то это уравнение можно будет разложить по p-представлению и вернуться к (18.45). Если нам задано p-представление состояния, а именно амплитуда <p|y> как алгебраическая функция импульса p, то из (18.47) можно получить <p|b> и продолжить вычисление интеграла. Вопрос теперь в следующем: а что делать, если нам задано описание состояния в x-представлении, а именно волновая функция y (x)=<x|y>?
Ну что ж, начнем раскладывать (18.48) в x-представлении.
Напишем
Но теперь надо знать другое: как выглядит состояние |b> в x-представлении. Если мы узнаем это, мы сможем взять интеграл. Итак, наша задача — найти функцию b (x)=<x|b>. Ее можно найти следующим образом. Мы видели в гл. 14, § 3, как <р|b> связано с <x|b>. Согласно уравнению (14.24),
Если нам известно <р|b>, то, решив это уравнение, мы найдем <x|b>. Но результат, конечно, следовало бы как-то выразить через y (x)=<x|y>, потому что считается, что именно эта величина нам известна. Будем теперь исходить из (18.47) и, опять применив (14.24), напишем
Интеграл берется по х, поэтому р можно внести под интеграл
Теперь сравним это с (18.53). Может быть, вы подумали, что <x|b> равно py(x)? Нет, напрасно! Волновая функция <х|b>=b(x) может зависеть только от х, но не от р. В этом-то вся трудность.
К счастью, кто-то заметил, что интеграл в (18.55) можно проинтегрировать по частям. Производная e-ipx/h по х равна (-i/h)pe-ipx/h, поэтому интеграл (18.55) это все равно, что
Если это проинтегрировать по частям, оно превратится в
Пока речь идет только о связанных состояниях, y(x) стремится к нулю при х®±Ґ, скобка равна нулю и мы имеем
А вот теперь сравним этот результат с (18.53). Вы видите, что
Все необходимое, чтобы взять интеграл в (18.52), у нас уже есть. Окончательный ответ таков: