Выбрать главу

Это исходное утверждение квантовой механики.

И вот в отсутствие векторного потенциала уравнение Шре­дингера для заряженной частицы (нерелятивистской, без спина) имеет вид

где j — электрический потенциал, так что qj — потен­циальная энергия. А уравнение (19.1) равнозначно утвержде­нию, что в магнитном поле градиенты в гамильтониане нужно

каждый раз заменять на градиент минус (iq/h)А, так что (19.2) пре­вращается в

Это и есть уравнение Шредингера для частицы с зарядом q (нерелятивистской, без спина), движущейся в электромагнитном поле А, j.

Чтобы стало ясно, что оно правильно, я хочу проиллюстриро­вать это простым примером, когда вместо непрерывного случая имеется линия атомов, расставленных на оси x на расстоянии b друг от друга, и существует амплитуда —К того, что электрон перепрыгнет в отсутствие поля от одного атома к другому. Тогда, согласно уравнению (19.1), если имеется вектор-потен­циал Аx(х, t) в x-направлении, то амплитуда перескока по сравнению с тем, что было раньше, изменится, ее придется домножить на exp[(iq/h)Axb] экспоненту с показателем, равным произведению iq/h на векторный потенциал, проинтегрирован­ный от одного атома до другого. Для простоты мы будем писать (q/h) Axєf(x), поскольку Ах, вообще говоря, зависит от х. Если обозначить через С(х)єСn амплитуду того, что электрон обнаружится возле атома n, расположенного в точке х, то скорость изменения этой амплитуды будет даваться уравнением

В нем три части. Во-первых, у электрона, который находится в точке х, есть некоторая энергия Е0. Это, как обычно, дает член Е0С(х). Затем имеется член — КС(х+b), т. е. амплитуда того, что электрон от атома n+1, расположенного в х+b, отпрыг­нул на шаг назад. Однако если это происходит в присутствии век­торного потенциала, то фаза амплитуды обязана сместиться со­гласно правилу (19.1). Если Ах на расстоянии между соседними атомами заметно не изменяется, то интеграл можно записать по­просту в виде значения Ах посредине, умноженного на расстоя­ние. Итак, произведение (iq/h) на интеграл равно ibf(x+b/2). А раз электрон прыгал назад, я этот сдвиг фазы отмечаю знаком минус. Это дает вторую часть. И точно так же имеется некоторая амплитуда того, что будет прыжок вперед, но на этот раз уже бе­рется векторный потенциал с другой стороны от х, на расстоя­нии b/2, и умножается на расстояние b. Это дает третью часть. В сумме получается уравнение для амплитуды того, что частица в поле, характеризуемом векторным потенциалом, окажется в точке х.

Но дальше мы знаем, что если функция С(х) достаточно плав­ная (мы берем длинноволновый предел) и если мы сдвинем ато­мы потеснее, то уравнение (14.4) (стр. 80) будет приблизитель­но описывать поведение электрона в пустоте. Поэтому следую­щим шагом явится разложение обеих сторон (19.4) по степеням b, считая b очень малым. К примеру, если b=0, то правая часть будет равна просто 0-2К)С(х), так что в нулевом приближе­нии энергия равняется Е0-2К. Затем пойдут степени b, но из-за того, что знаки показателей экспонент противоположны, оста­нутся только четные степени. В итоге, если вы разложите в ряд Тэйлора С(х), f(x) и экспоненты и соберете затем члены с b2, вы получите