Выбрать главу

В экспоненте мы выбрали плюс; иначе амплитуда при больших отрицательных n стала бы бесконечно большой. Точно так же допустимое решение для n>0 имело бы вид

Если подставить эти пробные решения в (11.28), то они удов­летворят всем уравнениям, кроме средней тройки, при условии, что

А раз сумма этих двух экспонент всегда больше 2, то эта энергия оказывается за пределами (ниже) обычной полосы. Это-то мы и искали. Оставшейся тройке уравнений (11.28) удастся удовлетворить, если взять с = с' и если к выбрать так, чтобы

Сопоставив это уравнение с (11.41), найдем энергию захвачен­ного электрона

Захваченный электрон обладает одной-единственной энергией (а не целой полосой); она расположена несколько ниже полосы проводимости.

Заметьте, что амплитуды (11.39) и (11.40) не утверждают, что пойманный электрон сидит прямо в атоме примеси. Вероят­ность обнаружить его у одного из соседних атомов дается квад­ратом этих амплитуд. Изменение ее показано столбиками на фиг. 11.7 (при каком-то наборе параметров).

Фиг. 11.7. Относительные вероятности обнаружить захваченный электрон в атом­ных узлах поблизости от примесного ато­ма — ловушки.

С наибольшей вероятностью электрон можно встретить близ атома примеси. Для соседних атомов вероятность спадает экспоненциально по мере удаления от атома примеси. Это новый пример «проникно­вения через барьер». С точки зрения классической физики элек­трону не хватило бы энергии, чтобы удалиться от энергетиче­ской «дырки» близ центра захвата. Но квантовомеханически он может куда-то недалеко просочиться.

§ 8. Амплитуды рассеяния и связанные состояния

Наш последний пример может быть использован, чтобы проиллюстрировать одну вещь, которая в наши дни очень полезна для физики частиц высокой энергии. Речь идет о связи между амплитудами рассеяния и связанными состояниями. Положим, мы открыли (при помощи опытов и теоретического анализа), как пионы рассеиваются на протонах. Затем откры­вается новая частица и кому-то хочется узнать, не является ли она просто комбинацией из пиона и протона, объединенных в одно связанное состояние (по аналогии с тем, как электрон, будучи связан с протоном, образует атом водорода)? Под связанным состоянием мы подразумеваем комбинацию, энергия которой ниже, чем у пары свободных частиц.

Существует общая теория, согласно которой, если ампли­туду рассеяния проэкстраполировать (или, на математическом языке, «аналитически продолжить») на энергии вне разрешен­ной зоны, то при такой энергии, при которой амплитуда стано­вится бесконечной, возникнет связанное состояние. Физическая причина этого такова. Связанное состояние — это когда имеют­ся только волны, стоящие близ некоторой точки; это состояние не порождается никакой начальной волной, оно просто сущест­вует само по себе. Относительная пропорция между так называе­мыми «рассеянными», или созданными, волнами и волнами, «посылаемыми внутрь», равна бесконечности. Эту идею мы мо­жем проверить на нашем примере. Выразим нашу рассеянную амплитуду (11.37) прямо через энергию Е рассеявшейся частицы (а не через k). Уравнение (11.30) можно переписать в виде

поэтому рассеянная амплитуда равна

Из вывода формулы следует, что применять ее можно только для реальных состояний — для тех, энергия которых попадает в энергетическую полосу, Е=Е0+2А. Но представьте, что мы об этом забыли и расширили нашу формулу на «нефизические» области энергии, где | Е-Е0|>2A. Для этих нефизических областей можно написать

Тогда «амплитуда рассеяния» (что бы это выражение ни зна­чило) равна

Теперь задаем вопрос: существует ли такая энергия Е, при которой b становится бесконечным (т. е. при которой выраже­ние для b имеет «полюс»)? Да, существует, если только F отри­цательно; тогда знаменатель (11.45) обратится в нуль при