Выбрать главу

В 1961 г. Дивер и Фейрбэнк из Станфордского универси­тета предприняли поиски такого квантованного потока и нашли его; примерно в то же время это проделали Долл и Набауэр в Германии.

В опыте Дивера и Фейрбэнка сверхпроводящий цилиндрик был изготовлен электроосаждением тонкого слоя олова на ку­сочке медной проволоки диаметром 1,3·10-3 см (длиной 1 см). Ниже 3,8° К олово становится сверхпроводящим, а медь остает­ся нормальным металлом. Проволока была помещена в неболь­шое регулируемое магнитное поле и температура снижалась до тех пор, пока олово не стало сверхпроводником. Затем убрали внешний источник поля. Вы понимаете, что по закону Ленца это вызвало появление тока, стремившегося погасить эффект убывания потока внутри цилиндра. Цилиндрик приобрел маг­нитный момент, пропорциональный потоку внутри него. Этот магнитный момент измеряли, для чего водили проволочкой вверх и вниз (как иглой в швейной машинке, но со скоростью 100 раз в секунду) внутри пары маленьких катушечек, поме­щенных у концов оловянного цилиндрика. Мерой магнитного момента было наводимое в катушках напряжение.

Дивер и Фейрбэнк, проделав свой опыт, обнаружили, что поток действительно квантуется, но фундаментальная единица равна половине той, которую предсказал Лондон. Тот же резуль­тат получили Долл и Набауэр. Сперва это выглядело очень таинственно, но теперь стало ясно, отчего так вышло. Соглас­но теории сверхпроводимости Бардина, Купера и Шриффера, то q, которое стоит в (19.29), это заряд пары электронов, т. е. равно 2qe. Фундаментальная единица потока равна

т. е. равна половине того, что было предсказано Лондоном. Теперь все сходится, и измерения свидетельствуют о существо­вании предсказанного чисто квантовомеханического, но круп­номасштабного явления.

§ 8. Динамика сверхпроводимости

Эффект Мейсснера и квантование потока подтверждают наши общие представления. Для полноты стоит еще продемонстри­ровать, как с этой точки зрения выглядели бы полные уравне­ния сверхпроводящей жидкости,— получается довольно инте­ресно. До сих пор я подставлял выражение для y только в урав­нения плотности заряда и тока. Но если я их подставлю в полное уравнение Шредингера, то получу уравнения для r и q. Интересно поглядеть, что из этого выйдет, потому что перед нами сейчас «жидкость» электронных пар с плотностью заряда r и с таинственной q; мы можем посмотреть, как выглядят уравнения такой «жидкости»! Итак, подставим волновую функ­цию (19.17) в уравнение Шредингера (19.3) и вспомним, что r и q это вещественнее функции от х, у и z. Если мы отделим вещественную часть от мнимой, то уравнений станет два. Чтобы запись была короче, я, следуя уравнению (19.19), напишу

Тогда одно из двух уравнений примет вид

Поскольку rv это и есть J [см. (19.18)], то мы просто еще раз получили уравнение непрерывности. Второе же уравнение говорит об изменении q:

Те из вас, кто хорошо знаком с гидродинамикой (думаю, очень немногие), в этом уравнении узнают уравнение движения электрически заряженной жидкости, если только отождествить hq с «потенциалом скоростей»; но только в последнем члене, который должен быть энергией сжатия жидкости, имеется до­вольно странная зависимость от плотности р. Во всяком случае, это уравнение утверждает, что скорость изменения величины hq дается членом с кинетической энергией (т/2)v2 плюс член с потенциальной энергий qj плюс добавочный член с множите­лем h2, который мы назовем «квантовомеханической энергией». Мы видели, что внутри сверхпроводника электростатические силы поддерживают r очень однородным, поэтому во всех прак­тических применениях этим членом почти наверняка можно пре­небречь при условии, что имеется только одна сверхпроводящая область. Если между двумя сверхпроводниками имеется гра­ница (или есть другие обстоятельства, за счет которых r может начать резко меняться), то этот член может стать существенным. Для тех, кто не так уж знаком с уравнениями гидродинамики, я попробую переписать (19.33) в том виде, который позволит яснее видеть физику. Я использую (19.31), чтобы q выразить через v. Беря от всего уравнения (19.33) градиент и выражая с помощью (19.31) Сq через А и v, я получу