Выбрать главу

Что же означает это уравнение? Вспомним, во-первых, что

Затем заметим, что если взять ротор от уравнения (19.19), то получится

поскольку ротор градиента всегда нуль. Но СXA — это маг­нитное поле В, так что два первых члена можно записать в виде

q/m(E+vXB).

Наконец, вы должны уяснить себе, что дv/дt обозначает ско­рость изменения скорости жидкости в данной точке. Если же вас интересует отдельная частица, то ее ускорение выразится полной производной от v (или, как иногда говорят в динамике жидкостей, «сопутствующим ускорением»), связанной с дv/дt формулой [см. гл. 40, § 2 (вып. 7)]

В правой части (19.34) стоит тот же член (v·С)v. Если перенести его влево, то (19.34) перепишется так:

Затем из (19.36) следует

Это и есть уравнения движения сверхпроводящей электрон­ной жидкости. Первое уравнение — это просто закон Ньютона для заряженной жидкости в электромагнитном поле. Оно ут­верждает, что ускорение каждой частицы жидкости с зарядом q вызывается действием обычной лоренцевой силы q(E+vXB) плюс добавочная сила, являющаяся градиентом какого-то таин­ственного квантовомеханического потенциала; эта сила обычно мала и становится заметной только при соприкосновении двух разных сверхпроводников. Второе уравнение утверждает, что жидкость «идеальна» — ротор обладает нулевой дивергенцией (у В дивергенция всегда нуль). Это означает, что скорость может быть выражена через потенциал скоростей. Обычно для идеаль­ной жидкости пишут СXv =0, но для идеальной заряженной жид­кости в магнитном поле это уравнение обращается в (19.39).

Итак, уравнение Шредингера для электронных пар в сверх­проводнике дает нам уравнения движения электрически заря­женной идеальной жидкости. Теория сверхпроводимости сов­падает с задачей гидродинамики заряженной жидкости. Если вы хотите решить какую-либо задачу, касающуюся сверхпровод­ников, вы берете эти уравнения для жидкости [или равноценную им пару (19.32) и (19.33)] и сочетаете их с уравнениями Мак­свелла, чтобы получить поля. (Заряды и токи, которыми вы пользуетесь, чтобы узнать поля, должны, естественно, включать как заряды и токи от сверхпроводника, так заряды и токи от внешних источников.)

Кстати, я считаю, что уравнение (19.38) не очень-то правиль­но, в него следует добавить член с плотностью. Он определяется не квантовой механикой, а вытекает из обычной энергии, связан­ной с вариациями плотности, так же как в уравнении для обыч­ной жидкости должна стоять плотность потенциальной энергии, пропорциональная квадрату отклонения r от r0 (невозмущенной плотности, которая в нашем случае равна также плотности за­ряда кристаллической решетки). Поскольку должны наблюдать­ся силы, пропорциональные градиенту этой энергии, то в (19.38) обязан стоять еще один член, пропорциональный С(r-r0)2. В нашем анализе он не появился, потому что возникает он от взаимодействия между частицами, которым я, применяя прибли­жение независимых частиц, пренебрег. Но это та самая сила, па которую я сослался, когда делал качественное утверждение о том, что электростатические силы стремятся сохранить r вдоль сверхпроводника почти неизменным.

§ 9. Переходы Джозефсона

И вот напоследок я перехожу к разбору очень интересного случая, впервые отмеченного Джозефсоном, к анализу того, что бывает при контакте двух сверхпроводников. Пусть у нас есть два сверхпроводника, связанные тонким слоем изолятора (фиг. 19.6).

Фиг. 19.6. Два сверхпроводника, разделенных тонким изолятором.

Теперь такое устройство называется «переходом Джозефсона». Если изолирующий слой толст, электроны не могут пройти через него, но если он достаточно тонок, то элект­роны могут иметь заметную квантовомеханическую амплитуду перескока. Это попросту новый пример квантовомеханического проникновения через барьер. Джозефсон проанализировал та­кой случай и выяснил, что при этом должно происходить немало странных явлений.