Ток можно получить и другим способом: кроме постоянного напряжения — приложить еще и высокую частоту. Пусть
где v<<V. Тогда
Но при малых Dx
Разложив по этому правилу sind, я получу
Первый член в среднем дает нуль, но второй в нуль не обращается, если
Значит, если частота переменного напряжения равна (q/h)V0, то через контакт пойдет ток. Шапиро сообщил, что он наблюдал такой резонансный эффект.
Если вы просмотрите работы на эту тему, то заметите, что в них формула для тока часто записывается в виде
где интеграл берется по пути, ведущему через переход. Причина здесь в том, что если переход находится в поле векторного потенциала, то фаза амплитуды переброса видоизменяется так, как было объяснено вначале [уравнение (19.1)]. Если вы всюду включите такой сдвиг фазы, то получите нужные формулы.
Наконец, я хотел бы описать очень эффектный и интересный опыт по интерференции токов, проходящих через два перехода, который был недавно проделан. Мы привыкли встречаться в квантовой механике с интерференцией амплитуд от двух щелей. Сейчас мы будем иметь дело с интерференцией двух токов, текущих через два перехода между сверхпроводниками. Она вызывается различием в фазах, с которыми сливаются токи, прошедшие по двум разным путям. На фиг. 19.7 показано параллельное соединение двух переходов а и b между сверхпроводниками.
Фиг. 19.7. Два параллельных перехода Джозефсона.
Концы сверхпроводников Р и Q подключены к приборам, которыми мы измеряем ток. Внешний ток Jполн будет суммой токов через каждый из переходов. Пусть Ja и Jb это токи через переходы, и пусть их фазы будут dа и db. Разность фаз волновых функций в точках Р и Q должна быть одинаковой, по какому бы пути вы ни пошли. На том пути, который следует через переход а, разность фаз между Р и Q равна dа плюс криволинейный интеграл от векторного потенциала вдоль верхнего пути:
Почему? Потому что фаза q связана с А уравнением (19.26). Если вы это уравнение проинтегрируете вдоль какого-то пути, то левая часть даст изменение фазы, которое тем самым как раз окажется пропорциональным криволинейному интегралу от А, что и написано. Изменение фазы по нижнему пути может быть записано подобным же образом:
Эти величины должны быть равны; если я их вычту, то получу, что разность дельт должна быть равна контурному интегралу от А по замкнутому пути
Здесь интеграл берется по замкнутому контуру Г (см. фиг. 19.7), проходящему через оба перехода. Интеграл от А это магнитный поток Ф через контур. Итак, две дельты оказываются отличающимися на 2qe/h, умноженное на магнитный поток Ф, который проходит между двумя ветвями схемы:
Изменяя магнитное поле в схеме, я смогу контролировать эту разность фаз. Я ее прилажу так, чтобы посмотреть, проявится ли в полном токе, текущем сквозь оба перехода, интерференция между его частями. Полный ток равен сумме Ja и Jb. Для удобства я приму
Тогда
Мы не знаем, каково значение d0, и природа здесь может, в зависимости от обстоятельств, вытворять все, что ей заблагорассудится. В частности, d0 может зависеть от прилагаемого к переходам внешнего напряжения. Но что бы мы ни делали, sind0 не окажется больше единицы. Значит, предельно сильный ток для каждого данного Ф дается формулой