Образование пар — это, как мы увидим позже, очень частый процесс, и многие люди предпочитают помещать фиг. 12.2 и 12.3 на один чертеж, причем энергию дырок откладывают вниз, хотя, конечно, эта энергия положительна. На фиг. 12.4 мы объединили эти два графика.
Фиг. 12.4. Энергетические диаграммы для электрона и дырки.
Преимущества такого графика в том, что энергия Eпары=Е-+Е+ , требуемая для образования пары (электрона в S и дырки в S’ ), дается попросту расстоянием по вертикали между S и S', как показано на фиг. 12.4. Наименьшая энергия, требуемая для образования пары, называется энергетической шириной, или шириной щели, и равняется
е-мин+E+мин.
Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная k, называя ее диаграммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электронов и дырок.
Фиг. 12.5. Диаграмма энергетических уровней для электронов и дырок.
Как создается пара электрон—дырка? Есть несколько способов. Например, световые фотоны (или рентгеновские лучи)
могут поглотиться и образовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интенсивности света. Если прижать к торцам кристалла два электрода и приложить «смещающее» напряжение, то электроны и дырки притянутся к электродам. Ток в цепи будет пропорционален силе света. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов. Пары электрон — дырка могут образоваться также частицами высоких энергий. Когда быстро движущаяся заряженная частица (например, протон или пион с энергией в десятки и сотни Мэв) пролетает сквозь кристалл, ее электрическое поле может вырвать электроны из их связанных состояний, образуя пары электрон — дырка. Подобные явления сотнями и тысячами происходят на каждом миллиметре следа. После того как частица пройдет, можно собрать носители и тем самым вызвать электрический импульс. Перед вами механизм того, что разыгрывается в полупроводниковых счетчиках, в последнее время используемых в опытах по ядерной физике. Для таких счетчиков полупроводники не нужны, их можно изготовлять и из кристаллических изоляторов. Так и было на самом деле: первый из таких счетчиков был изготовлен из алмаза, который при комнатных температурах является изолятором. Но нужны очень чистые кристаллы, если мы хотим, чтобы электроны и дырки
I могли добираться до электродов, не боясь захвата. Потому и используются кремний и германий, что образцы этих полупроводников разумных размеров (порядка сантиметра) можно получать большой чистоты.
До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон — дырка. Энергией пару может снабдить тепловая энергия кристалла. Тепловые колебания кристалла могут передавать паре свою энергию, вызывая «самопроизвольное» рождение пар.
Вероятность (в единицу времени) того, что энергия, достигающая величины энергетической щели Eщели, сосредоточится в месте расположения одного из атомов, пропорциональна ехр(-Ещеяи/kТ), где Т—температура, а k— постоянная Больцмана [см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положительные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.
Если количество электронов в единице объема есть Nn (n означает негативных, или отрицательных, носителей), а плотность положительных (позитивных) носителей Np, то вероятность того, что за единицу времени электрон с дыркой встретятся и проаннигилируют, пропорциональна произведению NnNp. При равновесии эта скорость должна равняться скорости, с какой образуются пары. Стало быть, при равновесии произведение NnNp должно равняться произведению некоторой постоянной на больцмановский множитель