Как правило, задачи по механике легче всего решать на языке установившихся волн; это проще, чем анализировать последствия отдельного толчка. Тогда появляется какая-то картина смещений, которая распространяется по кристаллу, как волна с заданной, фиксированной частотой. То же самое происходит с электроном, и по той же причине, потому что электрон описывается в квантовой механике похожими уравнениями.
Но нужно помнить одну вещь: амплитуда для электрона быть в данном месте это амплитуда, а не вероятность. Если бы электрон просто просачивался из одного места в другое, как вода через дырочку, то его поведение было бы совсем иным. Если бы, скажем, мы соединили два бачка с водой тоненькой трубочкой, по которой вода из одного бачка по капле перетекала в другой, то уровни воды выравнивались бы по экспоненте. С электроном же происходит просачивание амплитуды, а не монотонное переливание вероятностей. А одно из свойств мнимого члена (множителя i в дифференциальных уравнениях квантовой механики) — что он меняет экспоненциальное решение на колебательное. И то, что после этого происходит, ничуть не походит на то, как вода перетекает из одного бачка в другой.
Теперь мы хотим квантовомеханический случай проанализировать количественно. Пусть имеется одномерная система, состоящая из длинной цепи атомов (фиг. 11.1,а).
Фиг. 11.1. Базисные состояния электрона в одномерной решетке.
(Кристалл, конечно, трехмерен, но физика в обоих случаях очень близка; если вы разберетесь в одномерном случае, то сможете разобраться и в том, что бывает в трех измерениях.) Мы хотим знать, что случится, если в эту линию атомов поместить отдельный электрон. Конечно, в реальном кристалле таких электронов мириады. Но большинство их (в непроводящем кристалле почти все) занимает в общей картине движения свое место, каждый вертится вокруг своего атома, и все оказывается совершенно установившимся. А мы хотим рассуждать о том, что будет, если внутрь поместить лишний электрон. Мы не будем думать о том, что делают прочие электроны, потому что будем считать, что на то, чтобы изменить их энергию, потребуется очень много энергии возбуждения. Мы собираемся добавить электрон и создать как бы новый слабо связанный отрицательный ион. Следя за тем, что поделывает этот лишний электрон, мы делаем приближение, пренебрегая при этом внутренним механизмом атомов.
Ясно, что этот электрон сможет перейти к другому атому, перенося в новое место отрицательный ион. Мы предположим, что (в точности, как и в случае электрона, «прыгавшего» от протона к протону) электрон может с какой-то амплитудой «прыгать» от атома к его соседям с любой стороны.
Как же описывать такую систему? Что считать разумными базисными состояниями? Если вы вспомните, что мы делали, когда у электрона было только две возможные позиции, вы сможете догадаться. Пусть в нашей цепочке все расстояния между атомами одинаковы, и пусть мы их пронумеруем по порядку, как на фиг. 11.1,а. Одно базисное состояние — когда электрон находится возле атома № 6; другое базисное состояние — когда электрон находится возле № 7, или возле № 8, и т. д.; n-е базисное состояние можно описать, сказав, что электрон находится возле атома № п. Обозначим это базисное состояние |n>. Из фиг. 11.1 ясно, что подразумевается под тремя базисными состояниями:
С помощью этих наших базисных состояний можно описать любое состояние |j> нашего одномерного кристалла, задав все амплитуды <n|j> того, что состояние |j> находится в одном из базисных состояний, т. е. амплитуду того, что электрон расположен близ данного частного атома. Тогда состояние |j> можно записать в виде суперпозиции базисных состояний:
Кроме того, мы хотим еще предположить, что когда электрон находится близ одного из атомов, то имеется некоторая амплитуда того, что он просочится к тому атому, что слева, или к тому, что справа. Возьмем простейший случай, когда считается, что он может просочиться только к ближайшим соседям, а к следующему соседу он сможет дойти в два приема. Примем, что амплитуды того, что электрон перепрыгнет от одного атома к соседнему, равны iA/h (за единицу времени).
Изменим на время обозначения, и амплитуду <n|j>, связанную с n-м атомом, обозначим через Сn. Тогда (11.1) будет иметь вид
Если бы вы знали каждую из амплитуд Сn в данный момент, то, взяв квадраты их модулей, можно было бы получить вероятность того, что вы увидите электрон, взглянув в этот момент на атом п.