Произведение qpV в числителе показателя экспоненты — это как раз та энергия, которая требуется, чтобы пронести заряд qp сквозь разность потенциалов V.
Точно такое же уравнение существует и для плотностей носителей n-типа:
Если мы знаем равновесные плотности в каждом из двух материалов, то любое из этих уравнений даст нам разность потенциалов на переходе.
Заметьте, что для того, чтобы (12.10) и (12.11) давали одинаковые значения разности потенциалов V, произведение NpNn должно быть в p-области и в n-области одним и тем же.
Фаг. 12.11. Распределение потенциала вдоль транзистора, если не приложено напряжение.
(Вспомните, что qn=-qp.) Но мы еще раньше видели, что это произведение зависит только от температуры и от ширины энергетической щели кристалла. Если обе части кристалла находятся при одинаковой температуре, оба уравнения будут совместны, давая одинаковое значение разности потенциалов.
Но раз между двумя сторонами перехода имеется разность потенциалов, то это напоминает батарейку. Если соединить re-область с p-областью проволочкой, может по ней пойдет ток? Это будет замечательно, ведь тогда ток будет идти без остановки, не истощая материала, и мы будем обладать бесконечным источником энергии в нарушение второго закона термодинамики! Но если вы действительно соедините p-область с n-областью проводами, никакого тока не будет. И легко понять почему.
Возьмем сперва проводничок из материала без примесей. Если подсоединить его к re-области, получится переход, на котором возникнет разность потенциалов. Пусть, скажем, она составит половину всей разности потенциалов между p- и n-областями. А когда мы подведем нашу чистую проволоку к p-области перехода, то там снова, на новом переходе, возникнет разность потенциалов, опять равная половине падения потенциала на p—n-переходе. Во всех переходах разности потенциалов так приладятся друг к другу, что никакой ток в схеме не пойдет. И какой бы вы проволокой ни начали соединять обе стороны p—n-перехода, у вас всегда выйдет два новых перехода, и до тех пор, пока температура всех переходов одинакова, скачки потенциалов на переходах будут компенсировать друг друга и тока не будет. Оказывается, однако (если вы рассчитаете все детали), что если у части переходов температура отличается от температуры других частей, то ток пойдет. Этот ток будет нагревать одни переходы и охлаждать другие, и тепловая энергия будет превращаться в электрическую. Это явление определяет собой действие термопар, применяемых для измерения температуры, и термоэлектрических генераторов. То же явление используется и в небольших холодильниках.
Но если мы не в состоянии измерять разность потенциалов между двумя сторонами p—n-перехода, то откуда уверенность, что перепад потенциалов, показанный на фиг. 12.9, действительно существует? Ну, во-первых, можно осветить переход светом. Когда фотоны света поглощаются, они могут образовать пару электрон — дырка. В том сильном электрическом поле, которое существует в переходе (равном наклону потенциальной кривой на фиг. 12.9), дырку затянет в p-область, а электрон — в n-область. Если теперь обе стороны перехода подсоединить ко внешней цепи, эти добавочные заряды вызовут ток. Энергия света перейдет в электрическую энергию перехода. Солнечные батареи, которые генерируют для спутников электрическую мощность, действуют именно на этом принципе.