Общепринято при определении w пользоваться знаком минус; при таком соглашении wh — это энергия системы; она сохраняется. Итак, система с определенной энергией — это такая система, которая при сдвиге во времени на t воспроизводит самое себя, умноженную на e-iwt. (Это как раз то, что мы говорили, когда определяли квантовое состояние с определенной энергией, так что все согласуется.) Это означает, что если система находится в состоянии с определенной энергией и если гамильтониан не зависит от t, то независимо от того, что произойдет дальше, система во все позднейшие времена будет обладать той же энергией.
Теперь вы понимаете, стало быть, какая связь между законами сохранения и симметрией мира. Симметрия по отношению к сдвигам во времени влечет за собой сохранение энергии; симметрия относительно положения на осях х, у или z влечет за собой сохранение соответствующей компоненты импульса. Симметрия относительно поворотов вокруг осей х, у и z влечет за собой сохранение х-, у- и z-компонент момента количества движения. Симметрия относительно отражений влечет за собой сохранение четности. Симметрия по отношению к перестановке двух электронов влечет за собой сохранение чего-то, чему не придумано еще названия, и т. д. Часть этих принципов имеет классические аналоги, а часть — нет. В квантовой механике есть больше законов сохранения, чем это нужно для классической механики или по крайней мере чем обыкновенно в ней в ходу.
Чтобы вы смогли разобраться в других книгах по квантовой механике, мы сделаем небольшую техническую ремарку и познакомим вас с одним общепринятым обозначением. Операция сдвига по времени — это как раз та самая операция U^, о которой мы как-то говорили:
Многие предпочитают язык бесконечно малых сдвигов по времени или бесконечно малых перемещений в пространстве или поворотов на бесконечно малые углы. Поскольку всякое конечное смещение или угол можно постепенно накопить последовательными бесконечно малыми смещениями или поворотами, то часто легче проанализировать сначала этот бесконечно малый случай. Оператор бесконечно малого сдвига Dt во времени есть (по определению гл. 6, вып. 8)
Тогда Н аналогично классической величине, которую мы именуем энергией, потому что если Н^|y> оказывается равным
постоянной, умноженной на |y>, а именно если Н^|y>=E|y>,
то эта постоянная есть энергия системы.
То же самое проделывается и с другими операциями. Если мы делаем легкое смещение по х, скажем на Dx, то состояние
|y>, вообще говоря, перейдет в некоторое новое состояние
|y'>. Мы можем написать
потому что, когда Dx стремится к нулю, |y'> обязано обратиться опять в |y>, или, что то же самое, D^x (0)=1, а для малых Dx отклонение D^x (Dx) от единицы должно быть пропорционально Dx. Оператор рх, определенный таким путем, называется оператором импульса (естественно, для x-компоненты).
По тем же причинам для малых поворотов обычно пишут
и называют J^z оператором z-компоненты момента количества движения. Для тех особых состояний, для которых R^z (j)|y0>=еimj |y0>, можно для каждого малого угла, скажем Dj, разложить правую часть до членов первого порядка по Dj и получить
Сравнивая это с определением J^z по формуле (15.28), приходим к
Иначе говоря, если вы действуете оператором J^z на состояние с определенным моментом количества движения вокруг оси z, то получаете mh, умноженное на это состояние, где mh—количество z-компоненты момента количества движения. Все совершенно аналогично тому, как действие Н^ на состояние с определенной энергией дает Е|y>.