Теперь зададим следующий вопрос: если свет линейно поляризован в направлении х, то чему равен момент количества движения? Свет, поляризованный в направлении х, может быть представлен суперпозицией право- и левополяризованного света. Поэтому имеется некоторая амплитуда того, что момент количества движения равен +h, и некоторая амплитуда того, что момент равен -h, так что определенного момента количества движения у него нет, а есть амплитуда появиться с +h, и такая же появиться с -h. Интерференция этих двух амплитуд создает линейную поляризацию, обладающую равной вероятностью оказаться с плюс или с минус одной единичкой момента количества движения. Макроскопические измерения, проведенные над пучком линейно поляризованного света, покажут, что он несет нулевой момент количества движения, потому что среди большого числа фотонов, несущих противоположные количества момента, окажется поровну правых и левых, и средний момент количества движения будет равен нулю. И в классической теории вы не обнаружите никакого момента количества движения, разве что где-то окажутся следы какой-то круговой поляризации.
Мы говорили, что частица со спином 1 может иметь три значения Jz: +1, 0, -1 (те три состояния, которые нам встретились в опыте Штерна — Герлаха).
Но у света свой нрав: у него только два состояния. Состояния с нулем у него нет. Эта странная потеря связана с тем, что свет не может стоять на месте. У покоящейся частицы со спином j имеются 2j+1 возможных состояния со значениями jz, идущими с шагом 1 от -j до +j. Но оказывается, что если что-то имеет спин j, а масса этого чего-то равна нулю, то у него могут быть только состояния с компонентами +j и -j вдоль направления движения. Например, у света не три состояния, а два, хотя фотон — это объект со спином 1. Как же это согласуется с нашими прежними доказательствами, опирающимися на то, что происходит при поворотах в пространстве, доказательствами того, что для частиц со спином 1 необходима тройка состояний? Покоящуюся частицу можно поворачивать вокруг любой оси, не меняя состояния ее момента. Частицы же с нулевой массой покоя (например, фотоны или нейтрино) не могут находиться в покое; только повороты вокруг оси, указывающей направление движения, не изменят состояния момента. А поворотов вокруг одной оси не хватает на то, чтобы доказать, что нужны обязательно три состояния, если дано, что одно из них при поворотах на угол j меняется, как еij.
Еще одно замечание в сторону. Вообще-то частицы с нулевой массой покоя могут обойтись только одним из двух спиновых состояний (+j, -j) относительно линии движения. У нейтрино (частиц со спином 1/2) в природе существуют только состояния с компонентой момента количества движения -h/2, обратной направлению движения (а у антинейтрино — только с компонентой по направлению движения, +h/2). Когда же система обладает симметрией инверсии (так что четность сохраняется), требуются уже обе компоненты +j и -j. Примером является свет.
§ 5. Распад L0
Теперь приведем пример того, как теорема о сохранении момента количества движения применяется в чисто квантовофизических задачах. Рассмотрим распад лямбда-частицы (L0), которая расщепляется на протон и p--мезон посредством слабого взаимодействия:
Пусть нам известно, что спин у пиона равен нулю, у протона — половине, а у L0 тоже половине. Мы хотели бы решить следующую задачу: положим, что L0 рождена таким образом, что оказалась полностью поляризованной; это значит, что ее спин направлен, скажем, вверх по отношению к подходящим образом выбранной оси z (фиг. 15.6, а).
Фиг. 15.6. L0-частица со спином, направленным вверх, распадается на протон и пион (в системе центра масс).
Какова вероятность того, что протон вылетит под углом q?