<— | R^=<— |e-ij. Это все одно и то же.
* Вспомните, что спин — это аксиальный вектор и при отражении он переворачивается.
* Мы провели ось z' в плоскости xz и используем матричные элементы для Ry (q). То же получилось бы и при другом выборе осей.
* Мы сейчас предполагаем, что механизм квантовой механики вам настолько знаком, что обо всем можно говорить на чисто физическом языке, не тратя времени на расписывание всех математических деталей. Но если то, что мы здесь говорим, вам не очень ясно, то обратитесь к концу этого параграфа, где приведены некоторые недостающие детали.
* Мы попытались на худой конец доказать, что компонента момента количества движения вдоль направления движения у частицы с нулевой массой должна быть, например, кратной h/2, а не h/3. Но даже приведя в действие всевозможные свойства преобразований Лоренца (и многое другое), мы с этим не справились. Может, этой не так. Надо было бы потолковать об этом с профессором Вигнером, который знает все о таких вещах.
* Прошу прощения! Этот угол имеет обратный знак по отношению к использовавшемуся в гл. 9, § 4.
** Как правило, момент количества движения атомной системы весьма удобно измерять в единицах h. Тогда можно говорить, что частица со спином 1/2 обладает по отношению к любой оси моментом количества движения ±1/2. И вообще, что z-компонента момента количества движения есть т. Не приходится все время повторять h.
* Для большей строгости все эти рассуждения нужно было бы провести для малых поворотов e. Раз каждый угол j представляет собой сумму некоторого числа n таких поворотов, j=ne, то R^z (j)=[Rz (e)]n, и общее изменение фазы в n раз превосходит изменение для малого угла 8 и поэтому пропорционально j.
* Точнее, мы определим R^z(j) как поворот физической системы на -j вокруг оси z; это то же самое, что повернуть систему координат на +j.
** Мы всегда вправе выбрать ось z вдоль направления поля при условии, конечно, что его направление не меняется и что больше полей нет.
* В других книгах вы можете встретить формулы с другими знаками; вероятнее всего, в них используются углы, определенные по-иному.
* Кстати, вы можете доказать, что Q^ — это обязательно унитарный оператор, т. е. если он действует на |y>, приводя к |y>, умноженному на некоторое число, то это число должно иметь вид еid, где d — вещественно. Это мелкое замечание, а доказательство основано на следующем наблюдении. Всякая операция наподобие отражения или поворота не приводит к потере каких-либо частиц, так что нормировки |y'> и |y> должны совпадать; отличаться они вправе только на множитель с чисто вещественной фазой в показателе.