Литература: А. Р. Эдмондс, Угловые моменты в квантовой механике, в кн. «Деформация атомных ядер», ИЛ, 1958.
Глава 16
МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ
§ 1. Электрическое дипольное излучение
§ 2. Рассеяние света
§ 3. Аннигиляция позитрония
§ 4. Матрица поворота для произвольного спина
§ 5. Измерения ядерного спина
§ 6. Сложение моментов количества движения
Добавление 1. Вывод матрицы поворота
Добавление 2. Сохранение четности при испускании фотона
§ 1. Электрическое дипольное излучение
В предыдущей главе мы развили представления о сохранении момента количества движения в квантовой механике и показали, как ими можно воспользоваться для предсказания углового распределения протонов при распаде L0-частицы. Теперь мы хотим добавить еще несколько иллюстраций тех следствий, которые вытекают из сохранения момента количества движения в атомных системах. Первым примером послужит излучение света атомом. Сохранение момента количества движения (наряду с другими обстоятельствами) определит поляризацию и угловое распределение испускаемых фотонов.
Пусть имеется атом в возбужденном состоянии с определенным моментом количества движения, скажем со спином, равным 1; он, излучая фотон, переходит к состоянию с моментом нуль при более низкой энергии. Задача в том, чтобы представить угловое распределение и поляризацию фотонов. (Она очень похожа на задачу о распаде L0-частицы, но только теперь спин равен не 1/2, a 1.) Раз у возбужденного состояния спин равен единице, то для z-компоненты момента имеются три возможности. Значение т может быть или +1, или 0, или -1. Возьмем для примера m=+1. (Если мы разберемся в этом примере, то справимся и с другими.) Предположим, что момент количества движения атома направлен по оси +z (фиг. 16.1, а), и спросим, какова амплитуда того, что он излучит вверх по оси гправополяризованный по кругу свет, так что в результате его момент станет равным нулю (фиг. 16.1, б).
Фиг. 16.1. Атом с т = +1 излучает вдоль оси +z правый фотон.
Ответа на этот вопрос мы не знаем. Но зато мы знаем, что правополяризованный по кругу свет уносит вдоль направления своего распространения одну единицу момента количества движения. Значит, после излучения фотона положение станет таким, как показано на фиг. 16.1, б, т. е. атом остался с нулевым моментом относительно оси z, поскольку мы предположили, что низшее состояние атома имеет спин нуль. Обозначим амплитуду такого события буквой а. Точнее, а будет обозначать амплитуду излучения фотона в некоторый узкий телесный угол DW, окружающий ось z, за время dt. Заметьте, что амплитуда излучения левого фотона в том же направлении равна нулю. У такого фотона момент относительно оси z был бы равен -1, а так как у атома он равен нулю, то и в сумме получилось бы -1, так что момент не сохранился бы. Точно так же, если спин атома вначале направлен вниз (-1 вдоль оси z), то он может излучать в направлении оси +z только левые фотоны (фиг. 16.2).
Фиг. 16.2. Атом с m=-1 излучает вдоль оси z левый фотон.
Амплитуду такого события обозначим буквой b (снова имея в виду амплитуду излучения фотона в некоторый узкий телесный угол DW). С другой стороны, если атом находится в состоянии с m=0, он вообще не сможет испустить фотон в направлении +z, потому что у фотона момент количества движения относительно его направления распространения может быть только +1 или -1.