Далее, можно показать, что b и а связаны. Проделаем над ; системой, изображенной на фиг. 16.1, преобразование инверсии. Это значит, что мы должны представить себе, как будет выглядеть система, если мы каждую ее часть передвинем в соответствующую точку с другой стороны от начала координат. Но это не значит, что следует отражать и векторы момента количества движения, ведь они — искусственные образования. Нужно другое — нужно обратить истинный характер движения, соответствующего такому моменту количества движения.
На фиг. 16.3, а мы показали, как выглядит процесс, изображенный на фиг. 16.1, до и после инверсии относительно центра атома.
Фиг, 16.3. Если процесс (а) преобразовать путем инверсии относительно центра атома, он станет выглядеть, как (б).
Заметьте, что направление вращения атома не изменилось. В обращенной системе (фиг. 16.3, б) получается атом с m=+1, излучающий вниз левый фотон.
Если мы теперь повернем систему, изображенную на фиг. 16.3, б, на 180° вокруг оси х и у, она совпадет с фиг. 16.2. Сочетание инверсии и поворота превращает второй процесс в первый. Пользуясь табл. 15.2 (стр. 129), мы видим, что поворот на 180° вокруг оси у как раз переводит состояние с m=-1 в состояние с m=+1, так что амплитуда b должна быть равна амплитуде а, если не считать возможной перемены знака при инверсии. А перемена знака при инверсии зависит от четностей начального и конечного состояний атома.
В атомных процессах четность сохраняется, так что четность всей системы до и после излучения фотона должна быть одной и той же. Что на самом деле произойдет, зависит от того, положительны или отрицательны четности начального и конечного состояний атома — в разных случаях угловое распределение излучения будет различным. Возьмем обычный случай отрицательной четности начального состояния атома и положительной четности конечного; он даст так называемое «электрическое дипольное излучение». (Если начальное и конечное состояния обладают одинаковой четностью, то говорят, что происходит «магнитное дипольное излучение», напоминающее по характеру излучение витка с переменным током.) Если четность начального состояния отрицательна, его амплитуда при инверсии, переводящей систему из а в б на фиг. 16.3, меняет знак. Конечное состояние атома имеет положительную четность, так что его амплитуда при инверсии знака не меняет. Если в реакции сохраняется четность, то амплитуда b должна быть равна а во величине, но противоположна по знаку.
Мы приходим к заключению, что если амплитуда того, что состояние m=+1 излучит фотон вперед, равна а, то для рассматриваемых четностей начального и конечного состояний амплитуда того, что состояние m=-1 излучит вперед левый фотон, равна -а.
Теперь у нас есть все, чтобы найти амплитуду того, что фотон будет испущен под углом 0 к оси z. Пусть вначале атом поляризован так, что m=+1. Это состояние мы можем разложить на состояния с т = +1, 0, -1 относительно новой оси z', проведенной в направлении испускания фотона. Амплитуды этих трех состояний — как раз те, которые были приведены в нижней половине табл. 15.2 (стр. 129). Амплитуда того, что правый фотон испускается в направлении 0, равна тогда произведению а на амплитуду того, что в этом направлении будет m=+1, а именно
Амплитуда того, что в том же направлении будет испущен левый фотон, равна произведению -а на амплитуду того, что в новом направлении будет m=-1. Из табл. 15.2 следует
Если вас интересуют другие поляризации, то их амплитуды вы получите из суперпозиции этих двух амплитуд. Чтобы получить интенсивность любой компоненты как функцию угла, вам придется, конечно, взять квадрат модуля амплитуд.
§ 2. Рассеяние света
Воспользуемся этими результатами, чтобы решить немного более сложную задачу, но зато и более близкую к реальности. Предположим, что те же атомы находятся в своем основном состоянии (j=0) и рассеивают падающий на них пучок света. Пусть свет первоначально распространяется в направлении + z, так что фотоны падают на атом из направления -z, как показано на фиг. 16.4, а.