Фиг. 16.6. Одна из возможностей для аннигиляции позитрония вдоль оси z.
Те же рассуждения показывают, что если движущийся вверх фотон является правым, то движущийся вниз не может быть левым, ведь тогда конечное состояние обладало бы двумя единицами момента количества движения. А это не разрешается, если спин начального состояния равен нулю. Заметьте, что такое конечное состояние невозможно и тогда, когда основное состояние позитрония обладает спином 1, потому что в этом случае наибольшая величина момента количества движения в любом направлении равна единице.
А теперь мы покажем, что двухфотонная аннигиляция из состояния со спином 1 вообще невозможна. Могло бы показаться, что это не так, что если взять состояние с j=1, m=0, у которого момент количества движения относительно оси z равен нулю, то оно будет походить на состояние со спином 0 и поэтому распадется на два правых фотона. Конечно, изображенный на фиг. 16.7, а распад сохраняет момент количества движения относительно оси z.
Фиг. 16.7. Для состояния позитрония с j=1 процесс (а) и процесс (б), получаемый поворотом (а) вокруг оси у на 180°, в точности совпадают.
Но посмотрим, что будет, если мы повернем эту систему вокруг оси у на 180°; получится то, что показано на фиг. 16.7, б, т. е. конфигурация, в точности совпадающая с фиг. 16.7, а. Обменялись местами два фотона и больше ничего. А ведь фотоны — это бозе-частицы; перестановка их местами не меняет знака амплитуды, так что амплитуда распада на конфигурацию, показанную на фиг. 16.7, б, должна быть такой же, как и на конфигурацию фиг, 16.7, а. Но мы предположили, что у начального объекта спин был равен единице. А когда мы поворачиваем объект со спином 1 в состоянии с m=0 на 180° вокруг оси у, то его амплитуда меняет знак (см. табл. 15.2 для q=p, стр. 129). Значит, амплитуды обеих конфигураций на фиг. 16.7 должны иметь обратные знаки; частица со спином 1 не может распадаться на два фотона.
Когда образуется позитроний, то можно ожидать, что в течение 1/4 времени он будет превращаться в состояние со спином 0 и в течение 3/4 времени — в состояние со спином 1 (с m=-1,0 или +1). Так что 1/4 времени будет происходить двухфотонная аннигиляция. Остальные 3/4 времени двухфотонная аннигиляция происходить не может. Аннигиляция происходит, но на три фотона. Такой аннигиляции труднее дождаться, и время жизни получается в 1000 раз дольше — около 10-7 сек. Это и наблюдается на опыте. Аннигиляцией состояния со спином 1 мы подробнее заниматься не будем.
До сих пор мы, опираясь на сохранение момента количества движения, считали, что состояние позитрония с нулевым спином может превращаться в два правых фотона. Имеется и другая возможность: это состояние может превратиться в пару левы фотонов, как показано на фиг. 16.8. Следующий вопрос — како-
во соотношение между амплитудами этих двух типов распада? Это можно узнать, учтя сохранение четности.
Но для этого нам нужно знать четность позитрония. Физики-теоретики показали (сложным путем, который нелегко пояснить), что четности электрона и позитрона (его античастицы) должны быть противоположны, так что основное состояние позитрония со спином 0 должно обладать отрицательной четностью. Мы просто предположим, что четность отрицательна, и, поскольку мы получим согласие с экспериментом, мы сочтем это достаточно убедительным доводом.
Посмотрим же, что произойдет, если мы проделаем инверсию процесса на фиг. 16.6. При инверсии оба фотона меняют свои направления и поляризации. Обращенная картина выглядит так, как показано на фиг. 16.8.
Фиг. 16.8 Другой мыслимый процесс аннигиляции позитрония.
Если считать, что четность позитрония отрицательна, то амплитуды процессов на фиг. 16.6 и 16.8 должны иметь обратные знаки. Пусть |R1R2> — конечное состояние на фиг. 16.6, где оба фотона правые, а | L1L2> — конечное состояние на фиг. 16.8, где оба фотона — левые. Истинное конечное состояние (обозначим его |F>) должно быть таким: