Выбрать главу

Тогда инверсия поменяет местами все R со всеми L и приведет к состоянию

имеющему по сравнению с (16.19) знак минус. Значит, конечное состояние |F> обладает отрицательной четностью, совпадаю­щей с четностью первоначального состояния позитрония со спином 0. Это единственное конечное состояние, кото­рое сохраняет и момент количества движения и четность. Можно, конечно, вычислить амплитуду то­го, что произойдет распад в это состояние, но мы не будем этим заниматься, нас сейчас интересует только поляризация.

Что же означает состояние (16.19) физически? Один из вы­водов таков: если мы наблюдаем пару фотонов при помощи двух детекторов, которые могут порознь считать число левых или число правых фотонов, то мы всегда будем видеть одновре­менно либо пару правых, либо пару левых фотонов. Иначе го­воря, если вы встанете по одну сторону позитрония, а ваш прия­тель по другую, то вы сможете, измеряя поляризацию, сказать вашему приятелю, какая поляризация у него получилась. С ве­роятностью 50% вы будете ловить то левый, то правый фотон; что вы поймаете, то и предсказывайте.

Раз левая и правая поляризации встречаются поровну, то все это сильно смахивает на линейную поляризацию. Спросим себя, что будет, если наблюдать фотон с помощью счетчиков, которые воспринимают только линейно поляризованный свет? Поляризацию g-квантов измерять не так легко, как поляриза­цию света; нет таких поляризаторов, которые на столь коротких волнах хорошо работают. Но вообразим, чтобы облегчить об­суждение, что такое бывает. Пусть имеется счетчик, который воспринимает только x-поляризованный свет, а по ту сторону позитрония стоит кто-то, кто тоже наблюдает линейно поляри­зованный свет, но только, скажем, y-поляризованный. Каков шанс, что вы оба одновременно заметите фотоны от аннигиля­ции? Нужно найти амплитуду того, что |F> будет в состоянии 1y2>. Иными словами, мы ищем амплитуду

<х1y2|F>,

которая, конечно, равна просто разности

Далее, хотя нам сейчас нужны двухчастичные амплитуды для двух фотонов, с ними здесь можно обращаться так же, как с амплитудами для отдельных частиц, ведь каждая частица действует независимо от другой. Это значит, что амплитуда <x1y2|R1R2> попросту равна произведению двух независимых амплитуд <x1|R1> и <y2|R2>. Эти амплитуды (см. табл. 15.3, стр. 130) равны 1/Ц2 и i/Ц2, так что

Аналогично,

Вычитая их, как сказано в (16.21), получаем

Значит, если вы заметите в своем x-поляризованном детекторе фотон, то ваш приятель с вероятностью единица тоже заметит фотон в своем y-поляризованном детекторе.

Теперь предположим, что ваш приятель настраивает свой счетчик на ту же х-поляризацию, что и вы. Тогда он ни за что не получит отсчета одновременно с вами. Подсчитав все, что надо, вы найдете, что

Естественно, если вы настроите свой счетчик на y-поляризацию, то ваш приятель будет получать совпадающие отсчеты только тогда, когда он сам настроится на z-поляризацию.

Все это создает интересное положение. Представьте, что вы взяли кусок известкового шпата, который разделяет фотоны на х- и y-поляризованные пучки, и в каждом пучке поставили по счетчику. Назовем один из них x-счетчик, другой — y-счетчик. Если ваш приятель, стоящий по другую сторону, сделает то же самое, вы всегда сможете его предупредить, в каком пучке со­бирается пройти его фотон. Всякий раз, как у вас и у него полу­чаются одновременные отсчеты, вы можете посмотреть, в какой из ваших детекторов попал фотон, и дать ему знать, какой из его счетчиков поймал фотон. Пусть, скажем, в некотором распаде вы обнаружите, что фотон вошел в ваш x-счетчик; тогда вы крик­нете ему, что в его y-счетчике произошел отсчет.