Тогда инверсия поменяет местами все R со всеми L и приведет к состоянию
имеющему по сравнению с (16.19) знак минус. Значит, конечное состояние |F> обладает отрицательной четностью, совпадающей с четностью первоначального состояния позитрония со спином 0. Это единственное конечное состояние, которое сохраняет и момент количества движения и четность. Можно, конечно, вычислить амплитуду того, что произойдет распад в это состояние, но мы не будем этим заниматься, нас сейчас интересует только поляризация.
Что же означает состояние (16.19) физически? Один из выводов таков: если мы наблюдаем пару фотонов при помощи двух детекторов, которые могут порознь считать число левых или число правых фотонов, то мы всегда будем видеть одновременно либо пару правых, либо пару левых фотонов. Иначе говоря, если вы встанете по одну сторону позитрония, а ваш приятель по другую, то вы сможете, измеряя поляризацию, сказать вашему приятелю, какая поляризация у него получилась. С вероятностью 50% вы будете ловить то левый, то правый фотон; что вы поймаете, то и предсказывайте.
Раз левая и правая поляризации встречаются поровну, то все это сильно смахивает на линейную поляризацию. Спросим себя, что будет, если наблюдать фотон с помощью счетчиков, которые воспринимают только линейно поляризованный свет? Поляризацию g-квантов измерять не так легко, как поляризацию света; нет таких поляризаторов, которые на столь коротких волнах хорошо работают. Но вообразим, чтобы облегчить обсуждение, что такое бывает. Пусть имеется счетчик, который воспринимает только x-поляризованный свет, а по ту сторону позитрония стоит кто-то, кто тоже наблюдает линейно поляризованный свет, но только, скажем, y-поляризованный. Каков шанс, что вы оба одновременно заметите фотоны от аннигиляции? Нужно найти амплитуду того, что |F> будет в состоянии |х1y2>. Иными словами, мы ищем амплитуду
<х1y2|F>,
которая, конечно, равна просто разности
Далее, хотя нам сейчас нужны двухчастичные амплитуды для двух фотонов, с ними здесь можно обращаться так же, как с амплитудами для отдельных частиц, ведь каждая частица действует независимо от другой. Это значит, что амплитуда <x1y2|R1R2> попросту равна произведению двух независимых амплитуд <x1|R1> и <y2|R2>. Эти амплитуды (см. табл. 15.3, стр. 130) равны 1/Ц2 и i/Ц2, так что
Аналогично,
Вычитая их, как сказано в (16.21), получаем
Значит, если вы заметите в своем x-поляризованном детекторе фотон, то ваш приятель с вероятностью единица тоже заметит фотон в своем y-поляризованном детекторе.
Теперь предположим, что ваш приятель настраивает свой счетчик на ту же х-поляризацию, что и вы. Тогда он ни за что не получит отсчета одновременно с вами. Подсчитав все, что надо, вы найдете, что
Естественно, если вы настроите свой счетчик на y-поляризацию, то ваш приятель будет получать совпадающие отсчеты только тогда, когда он сам настроится на z-поляризацию.
Все это создает интересное положение. Представьте, что вы взяли кусок известкового шпата, который разделяет фотоны на х- и y-поляризованные пучки, и в каждом пучке поставили по счетчику. Назовем один из них x-счетчик, другой — y-счетчик. Если ваш приятель, стоящий по другую сторону, сделает то же самое, вы всегда сможете его предупредить, в каком пучке собирается пройти его фотон. Всякий раз, как у вас и у него получаются одновременные отсчеты, вы можете посмотреть, в какой из ваших детекторов попал фотон, и дать ему знать, какой из его счетчиков поймал фотон. Пусть, скажем, в некотором распаде вы обнаружите, что фотон вошел в ваш x-счетчик; тогда вы крикнете ему, что в его y-счетчике произошел отсчет.