Выбрать главу

Если вы все еще не удовлетворены и считаете это «парадок­сом», то покажите, что это действительно парадокс: придумайте такой воображаемый опыт, для которого теория квантовой ме­ханики двумя различными рассуждениями предсказывала бы два несогласующихся результата. В противном случае «пара­докс» — это всего лишь конфликт между тем, что есть на самом деле, и вашим ощущением того, какой «полагалось бы быть» реальной природе.

Вы считаете, что это не «парадокс», но что это все же очень странно? С этим мы все можем согласиться. Именно это и делает физику столь захватывающе интересной.

§ 4. Матрица поворота для произвольного спина

Сейчас, я надеюсь, вам уже ясно, как важно представ­ление о моменте количества движения для понимания атомных процессов. До сих пор мы рассматривали только системы со спи­нами (или «полными моментами количества движения») 0, 1/2 и 1. Но бывают, конечно, и атомные системы с большими момента­ми количества движения. Для анализа таких систем нужны такие же таблицы амплитуд поворота, какие мы привели в гл. 15, § 6. Иными словами, нужна матрица амплитуд для спина 3/2, 2, 5/2, 3 и т. д. Мы не будем подробно рассчитывать эти таблицы, но хотели бы показать, как это делается, чтобы вы, если понадобится, могли сами это проделать.

Как мы видели раньше, любая система со спином, или «пол­ным моментом количества движения», j может существовать в одном из 2/ + 1 состояний, в которых z-компонента момента количества движения принимает одно из дискретных значе­ний j, j-1, j -2, . . ., -(j-1), -j (все в единицах h). Обозначая z-компоненту момента количества движения про­извольного выбранного состояния через mh, можно определить состояние момента количества движения, задав численные значения двух «квантовых чисел момента количества движения» j и m. Такое состояние можно отметить, указав вектор состоя­ния | j, m>. В случае частиц со спином 1/2 могут быть два состоя­ния | 1/2, 1/2) и | 1/2, -1/2> a состояния системы со спином 1 в этих обозначениях можно записать как |1, +1>, |1, 0>, | 1, -1>. У частицы со спином 0 может быть, конечно, лишь одно

состояние | 0, 0>.

Теперь мы можем посмотреть, что происходит, когда мы прое­цируем общее состояние | j, m> на представление, относящееся к повернутой системе осей. Прежде всего известно, что j — это число, которое характеризует систему, поэтому оно не меняется. При повороте осей мы получим просто смесь различных значе­ний т для одного и того же j. В общем случае появится амплиту­да того, что система в повернутой системе координат окажется в состоянии | j, m'>, где m' — новая z-компонента момента ко­личества движения. Значит, нам нужны матричные элементы <j, m' |R|j, m> всевозможных поворотов. Мы уже знаем, что бывает, если поворот делается на угол j вокруг оси z. Новое состояние — это попросту старое, умноженное на eimj, у него по-прежнему то же значение т. Это можно записать так:

или, если вам больше нравится,

(где dm,m' равно единице при m' = m, и нулю в прочих случаях).

При поворотах вокруг любой другой оси возникает переме­шивание различных m-состояний. Можно было бы, конечно, попытаться подсчитать матричные элементы для произвольных поворотов, описываемых углами Эйлера b,a и g. Но будет легче, если мы вспомним, что самый общий такой поворот может быть составлен из трех поворотов Rz(g), Ry(a), Rz(b); так что если мы знаем матричные элементы для поворотов вокруг оси y, то уже располагаем всем необходимым.

Как же нам найти матрицу поворота для поворота частицы со спином j на угол q вокруг оси у? Опираясь на основные за­коны (и на то, что уже было), это сделать нелегко. Мы так посту­пали со спином 1/2: вывели все, что нужно, пользуясь довольно сложными соображениями симметрии. Для спина 1 мы это про­делали уже иначе: рассмотрели частный случай, когда система со спином 1 складывается из двух систем со спином 1/2. Если вы последуете за нами и признаете правильным тот факт, что в общем случае ответы зависят только от спина j, а не от того, как скреплены между собой разные части системы со спином j, то мы сможем обобщить рассуждения для спина 1 на произвольный спин. Мы сможем, например, соорудить искусственную систему со спином 3/2 из трех объектов со спином 1/2. Мы сможем даже избежать всяких усложнений, вообразив, что все они суть различные частицы — скажем, протон, электрон и мюон. Преобразуя каждый объект со спином 1/2, мы увидим, что происходит со всей системой — надо только вспомнить, что для комбинированного состояния все амплитуды перемножаются. Давайте посмотрим, как все это проходит.