Но что является состоянием |J=3/2, М=+1/2>? Кандидатов здесь два, они стоят во второй строчке (16.42), и всякая их линейная комбинация тоже даст М=+1/2. Значит, в общем случае можно ожидать, что
где a и b — два числа. Их именуют коэффициенты Клебша — Гордона. Найти их и будет нашей очередной задачей.
И мы их легко найдем, если просто вспомним, что дейтрон состоит из нейтрона и протона, и в явном виде распишем состояния дейтрона, пользуясь правилами табл. 16.3. Если это проделать, то перечисленные в (16.42) состояния будут выглядеть так, как показано в табл. 16.4.
Пользуясь состояниями из этой таблицы, мы хотим образовать четверку состояний с J=3/2. Но ответ нам уже известен, потому что в табл. 16.1 уже стоят состояния со спином 3/2, образованные из трех частиц со спином 1/2. Первое состояние в табл. 16.1 имеет |J=3/2, М=+3/2>, это |+++>, а в наших нынешних обозначениях это |e, +1/2; n, + 1/2; p, +1/2>, или первое состояние из табл. 16.4. Но это состояние — то же самое, что первое по списку в (16.42), так что наше выражение (16.45) подтверждается. Вторая строчка в табл. 16.1 утверждает, если воспользоваться нашими теперешними обозначениями, что
То, что стоит в правой части, можно, очевидно, составить из двух членов во второй строчке табл. 16.4, взяв Ц2/3 от первого члена и Ц1/3 от второго. Иначе говоря, (16.47) эквивалентно
Таблица 16.4 · СОСТОЯНИЯ МОМЕНТА КОЛИЧЕСТВА ДВИЖЕНИЯ АТОМА ДЕЙТЕРИЯ
Мы нашли два наших первых коэффициента Клебша — Гордона a, и b [см. (16.46)]:
Повторяя ту же процедуру, найдем
а также, конечно,
Это и есть правила составления из спина 1 и спина 1/2 полного спина J=3/2. Мы свели (16.45) и (16.50) в табл. 16.5.
Таблица 16.5 · СОСТОЯНИЯ С J=3/2 АТОМА ДЕЙТЕРИЯ
Но у нас пока есть только четыре состояния, а у системы, которую мы рассматриваем, их шесть.
Из двух состояний во второй строчке (16.42) мы для образования |J=3/2, М=+1/2> составили только одну линейную комбинацию. Есть и другая линейная комбинация, ортогональная к ней, у нее тоже М=+1/2 и она имеет вид
Точно так же из двух состояний в третьей строке (16.42) можно скомбинировать два взаимно-ортогональных состояния, каждое с М =-1/2. То, которое ортогонально к (16.50), имеет вид
это и есть два оставшихся состояния. У них M=me+md=±1/2; эти состояния должны соответствовать J=1/2. Итак, мы имеем
Можно убедиться, что эти два состояния действительно ведут себя как состояния объекта со спином 1/2; для этого надо выразить дейтронную часть через нейтронные и протонные состояния (при помощи табл. 16.3). Первое состояние в (16.53) превратится в
(16.55) а это можно переписать так:
Посмотрите теперь на выражение в первых фигурных скобках и подумайте, что получается при объединении е и р. Вместе они образуют состояние с нулевым спином (см. нижнюю строку в табл. 16.3) и не дают вклада в момент количества движения. Остался только нейтрон, значит, вся первая фигурная скобка (16.56) будет вести себя при поворотах как нейтрон, а именно как состояние с J=1/2, M=+1/2.
Повторяя те же рассуждения, убедимся, что во вторых фигурных скобках (16.56) электрон и нейтрон объединяются, чтобы образовать нулевой момент количества движения, и остается только вклад протона — с mp=+1/2. Скобка опять ведет себя как объект с J=+1/2, М=+1/2. Значит, и все выражение (16.56) преобразуется как |J=+1/2, М=+1/2>, чего мы и хотели. Состояние М=-1/2, отвечающее формуле (16.56), можно расписать так (заменив везде, где нужно, +1/2 на -1/2):