Выбрать главу

Вы легко проверите, что это совпадает со второй строчкой в (16.54), как и полагается, если каждая скобка представляет собой одно из двух состояний системы со спином 1/2. Значит, наши результаты подтвердились. Дейтрон и электрон могут существовать в шести спиновых состояниях, четыре из которых ведут себя как состояния объекта со спином 3/2 (табл. 16.5), а два — как объект со спином J/2 (16.54).

Результаты табл. 16.5 и уравнения (16.54) мы получили, вос­пользовавшись тем, что дейтрон состоит из нейтрона и протона. Правильность уравнений не зависит от этого особого обстоятель­ства. Для любого объекта со спином 1, объединяемого с объектом со спином 1/2, законы объединения (и коэффициенты) одни и те же. Совокупность уравнений в табл. 16.5 означает, что если система координат поворачивается, скажем, вокруг оси у, так что состояния частицы со спином 1/2 и частицы со спином 1 изме­няются согласно табл. 16.1 и 16.2, то линейные комбинации по правую сторону знака равенства будут изменяться так, как это свойственно объекту со спином 3/2. При таком же повороте со­стояния (16.54) будут меняться как состояния объекта со спи­ном 1/2. Результаты зависят только от свойств относительно пово­ротов (т. е. от спиновых состояний) двух исходных частиц, но отнюдь не от происхождения их моментов количества движения. Мы этим происхождением воспользовались лишь для вывода формул, выбрав частный случай, в котором одна из составных частей сама состоит из двух частиц со спином 1/2 в симметричном состоянии. Все наши результаты мы свели в табл. 16.6, изменив индексы е и d на а и b, чтобы подчеркнуть их общность.

Таблица 16.6 · ОБЪЕДИНЕНИЕ ЧАСТИЦЫ СО СПИНОМ 1/2( ja=1/2) С ЧАСТИЦЕЙ СО СПИНОМ 1 (jb=1)

Поставим теперь себе общую задачу найти состояния, кото­рые можно образовать, объединяя два объекта с произвольными спинами. Скажем, у одного спин ja (так что его z-компонента mа пробегает 2jа+1 значений от -ja до +ja, а у другого jb (с z-компонентой mb, пробегающей значения от - jb до+jb).

Объединенные состояния суть | а, mа; b, mb>, их всего (2ja+1)(2jb+1). Какие же состояния с полным спином / мы обнаружим?

Полная z-компонента М момента количества движения рав­няется mа+mb, и все состояния можно перечислить, опираясь на величину М [как в (16.42)]. Наибольшое М является единст­венным; оно отвечает значениям ma=ja и mb=jb и равно по­просту ja+jb. Это означает, что наибольший полный спин J также равен сумме jа+jb:

J=Ммакс=ja+jb.

Следующему значению М, меньшему чем Ммакс на единицу, будут соответствовать два состояния (либо mа, либо mb меньше своих максимальных значений на единицу). Из них должно быть образовано одно состояние, принадлежащее совокупности с J=ja+jb, и останется еще одно, которое будет принадлежать новой совокупности с J=ja+jb-1. Следующее значение М (третье сверху) можно составить тремя путями (из ma=ja 2, mb=jb, из ma=ja-1, mb=jb-1 и из ma=ja, mb=jb -2). Два из них принадлежат к уже начавшим составляться груп­пам; третье говорит нам, что надо включить в рассмотрение и со­стояния с J=ja+jb-2. Такие рассуждения будут продол­жаться до тех пор, пока уже нельзя будет, меняя то одно, то дру­гое т, получать новые состояния.