* Тем более, что большая часть работы уже проделана, раз у нас есть общая матрица поворота (16.35).
* Отдачей, которую испытал Ne20* в первой реакции, можно пренебречь. Или, еще лучше, подсчитать и сделать поправку на нее.
* Детали вы найдете в добавлении, стр. 165.
* Мы не нормировали наши амплитуды и не умножали их на амплитуду распада в то или иное конечное состояние, но легко видеть, что наш результат верен, ибо, рассчитывая вторую из взаимоисключающих возможностей [см. (16.23)], мы получаем вероятность нуль.
* Заметьте, что мы всегда анализируем момент количества движения относительно направления движения частицы. Если бы мы стали интересоваться моментом количества движения относительно других осей, нам пришлось бы учесть возможность «орбитального» момента количества движения — от члена pXr. Так, мы не вправе говорить, что фотоны вылетают прямо из центра позитрония. Они могли вылететь, как два комка с обода вертящегося колеса. О таких подробностях не приходится задумываться, если проводить ось вдоль направления движения.
* При нашем нынешнем глубоком понимании мира нелегко ответить на вопрос—менее ли «материальна» энергия фотона, чем энергия электрона, ведь, как вы помните, все частицы ведут себя очень похоже. Единственное различие в том, что у фотона масса покоя равна нулю.
* Кое-кто может возразить, что все эти рассуждения неверны, потому что наши конечные состояния не обладают определенной четностью. В добавлении 2 в конце этой главы вы найдете другое доказательство, которое вас удовлетворит.
* Когда мы переводим х, у, z в -х, -у, -z, то можно подумать, что все векторы перевернутся. Это верно для полярных векторов, таких, как смещения и скорости, но не для аксиальных векторов наподобие момента количества движения, да и любых векторов, представляющих собой векторное произведение двух полярных векторов. Компоненты аксиальных векторов при инверсии не меняются.
Главa 17
АТОМ ВОДОРОДА
И ПЕРИОДИЧЕСКАЯ ТАБЛИЦА
§ 1. Уравнение Шредингера для атома водорода
§ 2. Сферически симметричные решения
§ 3. Состояния с угловой зависимостью
§ 4. Общее решение для водорода
§ 5. Волновые функции водорода
§ 6. Периодическая таблица
§ 1. Уравнение Шредингера для атома водорода
Самым замечательным успехом в истории квантовой механики было объяснение всех деталей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе квантовой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объяснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объяснении таинственных свойств химических элементов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в пространстве, следуя тем представлениям, которые были развиты в гл. 14.
Для полного описания атома водорода следовало бы учесть движения обеих частиц — как протона, так и электрона. В квантовой механике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.
Мы сделаем еще и другое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивистской механики. Это потребует внесения небольших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравнением Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты появляются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия электрона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдвинуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообразим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электрона, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» моментом количества движения) тоже не будет меняться. В очень хорошем приближении можно считать, что электрон движется в атоме водорода как частица без спина — его орбитальный момент количества движения постоянен.