Выбрать главу

а это означает, что

Но это как раз коэффициенты разложения в ряд е+2ar. Функ­ция g оказывается быстро растущей экспонентой. Даже после умножения на е-ar получающаяся функция f(r) [см. (17.14)] будет при больших r меняться как еar. Мы нашли математиче­ское решение, но оно не является физическим. Оно представляет случай, когда электрону менее всего вероятно очутиться вблизи протона! Чаще всего он вам повстречается на очень больших расстояниях р. А волновая функция для связанного электрона должна при больших r стремиться к нулю.

Придется подумать, нельзя ли как-нибудь обмануть решение. Оказывается, можно. Посмотрите! Если бы, по счастью, оказа­лось, что a=1/n, где nлюбое целое число, то уравнение (17.22) привело бы к an+1=0. И все высшие члены обратились бы тоже в нуль. Вышел бы не бесконечный ряд, а конечный многочлен. Любой многочлен растет медленнее, чем еar, поэтому множитель е-a наверняка забьет его при больших r, и функ­ция f при больших r будет стремиться к нулю. Единственные решения для связанных состояний это те, для которых a=1/n, где n=1, 2, 3, 4 и т. д.

Оглядываясь на уравнение (17.16), мы видим, что у сфериче­ски симметричного волнового уравнения могут существовать решения для связанных состояний лишь при энергиях

Допустимы только те энергии, которые составляют именно такую часть ридберга ЕR=me4/2h2, т. е. энергия n-го уровня равна

Кстати, ничего мистического в отрицательных энергиях нет. Они отрицательны просто потому, что когда мы решили писать V= -е2/r, то тем самым в качестве нуля энергии выбрали энергию электрона, расположенного вдалеке от протона. Когда он ближе, то его энергия меньше, т. е. ниже нуля. Энергия ни­же всего (самая отрицательная) при n=1 и возрастает к нулю с ростом п.

Еще до открытия квантовой механики экспериментальное изучение спектра водорода показало, что уровни энергии описы­ваются формулой (17.24), где ЕR, как это следует из измерений, равно примерно 13,6 зв. Затем Бор придумал модель, которая привела к тому же уравнению (17.24) и предсказала, что ER должно равняться me4/2h2. Первым большим успехом теории Шредингера явилось то, что она смогла воспроизвести этот результат прямо из основного уравнения движения электрона.

Теперь, когда мы рассчитали наш первый атом, давайте рас­смотрим свойства полученного нами решения. Объединим все выделившиеся по дороге факторы и выпишем окончательный вид решения:

где

и

Пока нас интересует главным образом относительная вероят­ность обнаружить электрон в том или ином месте, можно в ка­честве а1 выбирать любое число. Возьмем, например, а1=1. (Обычно выбирают а1 так, чтобы волновая функция была «нор­мирована», т. е. чтобы полная вероятность обнаружить элек­трон где бы то ни было в атоме была равна единице. Мы в этом сейчас не нуждаемся.)

В низшем энергетическом состоянии n=1 и

Если атом водорода находится в своем основном (наиболее низ­ком энергетическом) состоянии, то амплитуда того, что элект­рон будет обнаружен в каком-то месте, экспоненциально падает с расстоянием от протона. Вероятнее всего встретить его вплотную близ протона. Характерное расстояние, на котором он встречается, составляет около одного r, или одного боровского радиуса rB.

Подстановка n=2 дает следующий более высокий уровень. В волновую функцию этого состояния входят два слагаемых. Она равна

Волновая функция для следующего уровня равна

Эти три волновые функции начерчены на фиг. 17.2.

Фиг. 17.2. Волновые функции трех первых состоя­ний атома водорода с l=0. Масштабы выбраны так, чтобы полные вероятности совпадали.