Выбрать главу

Фиг. 17.3. Точка (х, у, z) лежит на оси z' системы координат х' , у', z'.

Мы знаем, что он не сможет оказаться на оси z', если только m — его z'-компонента момента коли­чества движения — не равна нулю. Когда же m' =0, то амплитуда того, что электрон обнаружится на оси z', есть Fl(r). Значит, результат получится перемножением двух амплитуд. Первая это амплитуда того, что атом, находящийся в состоянии |l, т> относительно оси z, окажется в состоянии | l, m'=0> относи­тельно оси z' . Умножьте эту амплитуду на Fl (r) и вы получите амплитуду yl,m(r) того, что электрон обнаружится в точке (r, q, j) относительно первоначальной системы осей.

Давайте все это распишем. Матрицы преобразования для поворотов мы уже вычислили. Чтобы перейти от системы х, у, z к системе х', у', z' (см. фиг. 17.3), можно сперва сделать поворот вокруг оси z на угол j, а потом сделать поворот вокруг новой оси у (оси у') на угол q. Совместный поворот выразится произведением

Rу(q)Rz(j).

Амплитуда того, что после поворота обнаружится состояние | l, m' =0>, есть

В итоге получаем

Орбитальное движение может обладать только целыми зна­чениями l. (Если электрон может быть обнаружен в любом месте, где r0, то имеется некоторая амплитуда того, что в этом на­правлении будет m=0. А состояния с m=0 бывают только при целых спинах.) Матрицы поворота для l=1 приведены в табл.15.2 (стр. 129). Для больших l вы можете воспользоваться общими формулами, выведенными в гл. 16. Матрицы Rz(j) и Ry(q) написаны по отдельности, но как их комбинировать, вы знаете. В общем случае вы начнете с состояния | l, m> и подей­ствуете на него оператором Rz(j), получив новое состояние Rz(j)|l, т> (которое просто равно eimj|l, m>). Затем вы подействуете на это состояние оператором Ry(q) и получите состояние Ry(q) Rz(j) |l, m>. Умножение на <l, 0| даст вам матричный элемент (17.31).

Матричные элементы операции поворота — это алгебраиче­ские функции от q и j. Те частные виды функций, которые появляются в (17.31), возникают и во многих других задачах, связанных с волнами на сфере. Им присвоили особое имя. Правда, не у всех авторов обозначения одинаковы; чаще всего все же пишут

Функции Yl,m(q, j) называют сферическими гармониками, a a — просто численный множитель, который зависит от того, как определено Yl,m. При обычном определении

В этих обозначениях волновые функции водорода записываются так:

Угловые функции Yl,m (q,j) важны не только во многих квантовомеханических задачах, но и во многих областях клас­сической физики, в которых встречается оператор С2, например в электромагнетизме. В качестве другого примера их примене­ния в квантовой механике рассмотрим распад возбужденного состояния Ne20 (о котором говорилось в предыдущей главе), которое испускает a-частицу и превращается в О16:

Neao'^o^-fHe4.

Допустим, что возбужденное состояние имеет спин l (обяза­тельно целый), а z-компонента момента количества движения есть т. Спросим вот о чем: если даны l и т, то какова амплитуда того, что a-частица вылетит в направлении, составляющем с осью z угол q и с плоскостью xz угол j (фиг. 17.4)?