Выбрать главу

Обратите, кстати, внимание, что все функции с данным l имеют одну и ту же четность — при нечетных l они от инвер­сии меняют свой знак, при четных l — нет. Поэтому можно на­писать, что четность состояния с орбитальным моментом l рав­на (-1)l.

Как мы видели, одни и те же угловые распределения мо­гут относиться к разным вещам: к ядерному распаду, к другим ядерным процессам, к распределению амплитуд наблюдения электрона в том или ином месте атома водорода. Например, если электрон находится в р-состоянии (l=1), то амплитуда того, что он обнаружится в каком-то месте, зависит от угла определен­ным образом, но всегда представляет собой линейную комби­нацию трех функций для l=1 из табл. 17.1. Возьмем очень интересный случай cosq. Он означает, что амплитуда, скажем, положительна в верхней части (q<p/2), отрицательна в нижней (q>p/2) и равна нулю при q=90°. Возводя ее в квадрат, видим, что вероятность встретить электрон меняется с q так, как пока­зано на фиг. 17.5, и не зависит от j.

Фиг. 17.5. График cos2q в по­лярных координатах, дающий относительную вероятность об­наружения электрона под раз­личными углами к оси z (для дан­ного r) в состоянии атома с l=1 и m=0.

Такое угловое распределение ответственно за то, что в молекулярной связи притяже­ние электрона в состоянии l=1 к другому атому зависит от направления. Отсюда ведет свое начало направленная валент­ность химического притяжения.

§ 4. Общее решение для водорода

В уравнении (17.35) мы записали волновые функции ато­ма водорода в виде

Эти волновые функции должны быть решениями дифференци­ального уравнения (17.7). Посмотрим, что это означает. Под­ставим (17.37) в (17.7); получим

Помножим все на r2/Fl и переставим члены; результат будет таков:

Левая часть этого уравнения зависит от q и j, а от r не зависит. Какое бы значение r мы ни взяли, от этого левая часть не изме­нится. Значит, то же должно быть выполнено и для правой части. Хотя в выражении в квадратных скобках там и сям попадаются разные r, все выражение от r зависеть не может, иначе бы не получилось уравнение, которое годится для всех r. Кроме того, как вы видите, эта скобка не зависит ни от q, ни от j. Она должна быть постоянным числом. Его величина имеет право зато зави­сеть от значения l того состояния, которое мы изучаем, поскольку этому состоянию принадлежит функция Fl; поэтому постоянное число мы обозначим Kl. Уравнение (17.35), стало быть, равно­значно двум уравнениям

Теперь взглянем на то, что мы сделали. Для каждого состоя­ния, описываемого числами l и m, мы знаем функции Yl,m; тогда из уравнения (17.40) можно определить Kl Затем, подставив Kl в (17.41), мы получим дифференциальное уравнение для функции Fl (r). Если мы его сможем решить, то все множители, входящие в (17.37), нам станут известны, и мы узнаем y(r).

Чему же равно Кl? Ну, во-первых, заметьте, что при всех т (входящих в данное l) оно должно быть одним и тем же, поэтому мы вправе выбрать в Yl,m то m, какое нам нравится, и вставить его в (17.40). Пожалуй, проще всего взять Yl,l. Из уравнения (16.24)

Матричный элемент Ry(q) тоже совсем прост:

где b некоторое число. Объединяя их, получаем

Подстановка этой функции в (17.40) даст

Теперь, когда мы определили Кl, уравнение (17.41) даст нам радиальную функцию Fl (r). Перед нами обычное уравнение Шредингера, у которого угловая часть заменена ее эквивален­том KlFl/r2. Перепишем (17.41) в той форме, в какой мы писали уравнение (17.8):