Аналогичные рассуждения позволяют разобраться в геометрии аммиака H3N. В азоте есть место еще для трех 2р-электронов, по одному на каждое состояние типа «x», «у» и «z». Три водорода будут вынуждены подсоединиться под прямыми углами друг к другу. Углы снова окажутся чуть больше 90°, опять-таки из-за электрического отталкивания, но по крайней мере теперь ясно, отчего молекула H3N не плоская. Углы в фосфине Н3Р уже ближе к 90°, а в H3As еще ближе. Мы не зря предположили, что NH3 не плоский, когда говорили о нем как о системе с двумя состояниями. Именно из-за этой объемности аммиака и возможен аммиачный мазер. Вы видите, что сама форма молекулы аммиака тоже следует из квантовой механики. Уравнение Шредингера явилось одним из величайших триумфов физики. Снабдив нас ключом к механизму, лежащему в основе строения атома, оно объяснило атомные спектры и всю химию, благодаря чему стала понятна физическая природа материи.
* В действительности мнение об инертности благородных газов оказалось, как и многое другое, сильным преувеличением. Криптон, например, весьма охотно соединяется с фтором, образуя кристаллы KrF6. Сейчас химия инертных газов превращается в большую и увлекательную науку.— Прим. ред.
* Это нетрудно вывести из (16.35). Но можно это сделать, исходя из основных принципов; надо только воспользоваться идеями, изложенными в гл. 16, § 4. Состояние |l, l> может быть составлено из 2l частиц со спином 1/2, у которых спин направлен вверх; а в состоянии |l, 0> l спинов было бы направлено вверх, а l — вниз. При повороте амплитуда того, что спин останется тем же, равна cosq/2, а амплитуда того, что он перевернется, равна sin q/2. А нас интересует амплитуда того, что l спинов не перевернутся, а другие l перевернутся. Такая амплитуда равна (cosq/2sinq/2)l, а это то же самое, что sinlq.
* Поскольку это и другие особые наименования являются частью общепринятого словаря атомной физики, вам попросту придется выучить их. Мы вам поможем их запомнить, поместив в этой главе небольшой «словарик» подобных терминов.
* Как обычно,
Глава 18
ОПЕРАТОРЫ
§ 1. Операции и операторы
§ 2. Средние энергии
§ 3. Средняя энергия атома
§ 4. Оператор места
§ 5. Оператор импульса
§ 6. Момент количества движения
§ 7. Изменение средних со временем
§ 1. Операции и операторы
Для того чтобы управиться со всем, что мы до сих пор делали в квантовой механике, достаточно было бы обычной алгебры, но мы все же время от времени демонстрировали особые способы записи квантовомеханических величин и уравнений. Мы хотели бы рассказать теперь немного больше о некоторых интересных и полезных способах описания квантовомеханических величин.
К предмету квантовой механики можно подойти разными способами, и во многих книгах прибегают совсем к иному подходу, чем у нас. Когда вы начнете читать другие книжки, то может оказаться, что вам не удастся сразу связать то, что в них говорится, с тем, что делали мы. Хотя в этой главе мы и получим кое-какие новые результаты, она не похожа на другие главы. У нее совсем иная цель: рассказать о других способах выражения тех же самых физических представлений. Зная это, вы легче поймете, о чем говорится в других книжках. Когда люди впервые начали разрабатывать классическую механику, они неизменно расписывали свои уравнения через х-, у- и z-компоненты. Затем кто-то сделал шаг вперед в указал, что все можно упростить, введя векторные обозначения. Правда, очень часто, чтобы представить себе задачу конкретнее, вы разбиваете векторы обратно на их компоненты. Но обычно все же куда легче делать расчеты и разбираться в существе дела, работая с векторами. В квантовой механике нам тоже удалось упростить запись многих вещей, воспользовавшись идеей «вектора состояния». Вектор состояния |y> ничего общего, конечно, не имеет с геометрическими векторами в трехмерном пространстве; это просто отвлеченный символ, который обозначает физическое состояние, отмечаемое своим «значком» или «названием» y. Представление это весьма и весьма полезно, потому что на языке этих символов законы квантовой механики выглядят как алгебраические уравнения. К примеру, тот наш фундаментальный закон, что всякое состояние можно составить из линейной комбинации базисных состояний, записывается так: