где Сi — совокупность обычных (комплексных) чисел, амплитуд Ci=<i|y>, а |1>, |2>, |3> и т. д. обозначают базисные состояния в некотором базисе, или представлении.
Если вы берете какое-то физическое состояние и что-то проделываете над ним (поворачиваете или ждете в течение времени At или еще что-то), то вы получаете уже другое состояние. Мы говорим: «производя над состоянием операцию, получаем новое состояние». Эту же идею можно выразить уравнением
Операция над состоянием создает новое состояние. Оператор А обозначает некоторую определенную операцию. Когда эта операция совершается над каким-то состоянием, скажем над |y>, то она создает какое-то другое состояние |j>.
Что означает уравнение (18.2)? Мы определяем его смысл так. Умножив уравнение на <i| и разложив |y> по (18.1), вы получите
(|j> — это состояния из той же совокупности, что и |i>. Теперь это просто алгебраическое уравнение. Число <i|j> показывает, какое количество базисного состояния |i> вы обнаружите в |j>, и оно определяется через линейную суперпозицию амплитуд <j|y> того, что вы обнаружите |y> в том или ином базисном состоянии. Числа <i|A^|j> — это попросту коэффициенты, которые говорят, сколько (какая доля) состояния <j|y> входит в сумму. Оператор А численно описывается набором чисел, или «матрицей»
Значит, (18.2) это запись уравнения (18.3) на высшем уровне. А на самом деле даже немножко и сверх того: в нем подразумевается нечто большее. В (18.2) нет ссылки на ту или иную систему базисных состояний. Уравнение (18.3) — это образ уравнения (18.2) в некоторой системе базисных состояний. Но, как известно, система годится любая. Именно это и имеется в виду в (18.3). Операторная манера записи, стало быть, уклоняется от того или иного выбора системы. Конечно, если вам хочется определенности, вы вольны избрать одну из систем. И когда вы делаете этот выбор, вы пишете уравнение (18.3). Значит, операторное уравнение (18.2) — это более отвлеченный способ записи алгебраического уравнения (18.3). Это очень походит на разницу между записью
c=aXb и записью
Первый способ нагляднее. Но если вам понадобятся числа, вы наверняка зададите сперва компоненты относительно некоторой системы осей. Точно так же, если вы хотите дать понять, что за штука А, вам нужно быть готовыми задать матрицу Аij через некоторую совокупность базисных состояний. И пока вы имеете в виду определенную совокупность чисел aij, уравнение (18.2) означает то же, что и (18.3). (И нужно еще помнить, что если уж вы знаете матрицу для одной частной совокупности базисных состояний, то всегда сможете подсчитать матрицу, соответствующую любому другому базису. Матрицу всегда можно преобразовать от одного представления к другому.)
Операторное уравнение (18.2) допускает и другие возможности. Если мы представили себе некоторый оператор А, то его можно применить к любому состоянию |y> и он создаст новое состояние A^ |y>. Временами получаемое таким путем «состояние» может оказаться очень своеобразным — оно может уже не представлять собой никакой физической ситуации, с которой можно встретиться в природе. (Например, может получиться состояние, которое не нормировано на вероятность получить один электрон.) Иными словами, временами мы можем получить «состояния», которые есть математически искусственные образования. Эти искусственные «состояния» могут все равно оказаться полезными, чаще всего в каких-либо промежуточных вычислениях.