Мы уже приводили много примеров квантовомеханических операторов. Встречался нам оператор поворота R^у(q), который, взяв состояние |y>, делает из него новое состояние, представляющее собой старое состояние с точки зрения повернутой системы координат. Встречался оператор четности (или инверсии)
, создающий новое состояние обращением всех координат. Встречались и операторы sх, sу и sz для частиц со спином 1/2.
Оператор J^z определялся в гл. 15 через оператор поворота на малые углы e:
Это, конечно, попросту означает, что
В этом примере J^z|y> — это умноженное на h/ie состояние, получаемое тоща, когда вы повернете |y> на малый угол e и затем вычтете прежнее состояние. Оно представляет «состояние», являющееся разностью двух состояний.
Еще один пример. Мы имели оператор р^х, он назывался оператором (x-компоненты) импульса и определялся уравнением, похожим на (18.6). Если D^x (L) — оператор, который смещает состояние вдоль х на длину L, то р^х определялось так:
где d — малое смещение. Смещение состояния |y> вдоль оси х на небольшое расстояние d дает новое состояние |y'>. Мы говорим, что это новое состояние есть старое состояние плюс еще новый кусочек
Операторы, о которых мы говорим сейчас, действуют на вектор состояния, скажем на |y>, являющийся абстрактным описанием физической ситуации. Это совсем не то, что алгебраические операторы, действующие на математические функции. Например, d/dx это «оператор», действие которого на f(x) создает из f(x) новую функцию f'(x)=df/dx. Другой пример алгебраического оператора — это С2. Можно понять, отчего в обоих случаях пользуются одним и тем же словом, но нужно помнить, что это разные типы операторов. Квантовомеханический оператор А действует не на алгебраическую функцию, а на вектор состояния, скажем на |y>. В квантовой механике употребляются и те и другие операторы, и часто, как вы увидите, в уравнениях сходного типа.
Когда вы впервые изучаете предмет, то все время надо иметь в виду эту разницу. А позднее, когда предмет вам станет ближе, вы увидите, что не так уж важно делать резкое различие между одними операторами и другими. И во многих книгах, как вы убедитесь, оба типа операторов обозначаются одинаково!
Теперь нам пора продвинуться вперед и узнать о многих полезных вещах, которые можно проделывать с помощью операторов. Но для начала небольшое замечание. Пускай у нас имеется оператор А^, матрица которого в каком-то базисе есть Aij=<i|A^|j>. Амплитуда того, что состояние A^|y> находится также в некотором другом состоянии |j>, есть <j|A^|y>. Имеет ли смысл комплексное сопряжение этой амплитуды? Вы, вероятно, сможете показать, что
где А^+ (читается «А с крестом») это оператор, матричные элементы которого равны
A+ij=(Aji)*. (18.9)
Иначе говоря, чтобы получить i, j-и элемент матрицы А+, вы обращаетесь к j, i-му элементу матрицы А (индексы переставлены) и комплексно его сопрягаете. Амплитуда того, что состояние А^+|j> находится в состоянии |y>, комплексно сопряжена амплитуде того, что А^|y> находится в |j>. Оператор А^+ называется «эрмитово сопряженным» оператору А^. Многие важные операторы квантовой механики имеют специальное свойство: если вы их эрмитово сопрягаете, вы опять возвращаетесь к тому же оператору. Если В как раз такой оператор, то В^+=В^; его называют «самосопряженным», или «эрмитовым», оператором.