Выбрать главу

Однако что значит «обладать абстрактным понятием»? Как можно проверить, обладает ли кто-то данным абстрактным понятием, например понятием «пятно»? Очевидно, только одним способом: предложить испытуемому серию картинок и попросить, чтобы он о каждой из них сказал, пятно это или нет. Если окажется, что он называет пятном только те и все те картинки, на которых «изображено пятно» (это уже с точки зрения испытующего), то, значит, понятием пятна он обладает. Иначе говоря, мы должны проверить его способность распознавать принадлежность любой предъявленной картинки к множеству картинок, которые мы описываем словом «пятно». Итак, абстрактное понятие в обычном смысле слова — во всяком случае когда речь идет о чувственно воспринимаемых образах — совпадает с введенным нами кибернетическим понятием понятия как множества ситуаций. Поэтому задачу распознавания называют также, желая сделать термин более конкретным, задачей распознавания образов (имеется в виду «обобщенных» образов) или задачей распознавания понятий (имеется в виду распознавание частных случаев понятий).

Множеству, состоящему из одной ситуации (картинки), соответствует в традиционной логике конкретное понятие «данная картинка». Отношения между множествами имеют свои непосредственные аналоги в отношениях между понятиями. Если большими буквами обозначить понятия, а маленькими — соответствующие множества, то дополнение множества a, т. е. множество всех мыслимых ситуаций, не входящих в a, соответствует понятию «не A». Пересечение множеств a и b, т. е. множество ситуаций, которые входят и в a, и в b, соответствует понятию «A и B одновременно». Например, если A — понятие «прямоугольник», а B — понятие «ромб», то «A и B одновременно» — понятие «квадрат». Объединение множеств a и b, т. е. множество ситуаций, которые входят хотя бы в одно из множеств a и b, соответствует понятию «либо A, либо B, либо A и B». Если множество a включает в себя множество b, т. е. каждый элемент множества b входит в множество a, но не наоборот, то понятие B есть частный случай понятия A. При этом говорят, что понятие A более общее (абстрактное), чем понятие B, а понятие B более конкретное, чем A. Например, квадрат есть частный случай прямоугольника. Наконец, если множества a и b совпадают, то понятия A и B по существу тождественны и отличаются, быть может, лишь внешней формой их описания — способом распознавания. Встав на точку зрения кибернетики, т. е. отождествив понятие с множеством ситуаций, мы должны рассматривать перечисленные соответствия не как определение новых терминов, а просто как указание на наличие в нашем языке нескольких пар синонимов.

Нервную сеть, решающую задачу распознавания, мы назовем распознавателем, а состояние эффектора на его выходе будем называть просто состоянием распознавателя. Отправляясь от понятия распознавателя, мы введем несколько более общее понятие классификатора. Распознаватель делит множество всех мыслимых ситуаций на два непересекающихся подмножества: A и не A. Можно представить себе деление полного множества ситуаций на произвольное число n пересекающихся подмножеств. Такие подмножества называют обычно классами. Теперь вообразим некую подсистему C, имеющую n возможных состояний и связанную нервной сетью с рецепторами таким образом, что, когда ситуация принадлежит к i-му классу (i-му понятию), подсистема C приходит в i-е состояние. Такую подсистему вместе с нервной сетью мы будем называть классификатором по множеству n понятий (классов), а, говоря о состоянии классификатора, подразумевать состояние подсистемы C (выходной подсистемы). Распознаватель — это, очевидно, классификатор с числом состояний n = 2.

В системе, организованной по двоичному принципу подобно нервной системе, подсистема C с n состояниями будет, конечно, состоять из какого-то числа элементарных подсистем с двумя состояниями, которые можно рассматривать как выходные подсистемы (эффекторы) распознавателей. Состояние классификатора, следовательно, будет описываться указанием состояний ряда распознавателей. Однако эти распознаватели могут быть тесно связаны между собой как по структуре сети, так и по выполняемой функции в нервной системе, и в этом случае их следует рассматривать в совокупности как один классификатор.