Рис. 2.8. Редупликация эффекторов
На рис. 2.8 показаны схемы, которые возникают из схемы 2.7,в путем редупликации эффектора. В схеме б возбуждение одного рецептора должно по двум каналам передаваться двум эффекторам. Однако известно, что электрическое сопротивление синапсов резко падает после того, как по ним первый раз проходит ток. Поэтому если возбуждение направится по одному каналу, то этот канал связи будет закреплен, а второй окажется шунтированным и может «отсохнуть» (схема в). Затем возбуждение может продолжить дорогу через штриховую связь (схема г), что знаменует зарождение первого уровня классификаторов.
На рис. 2.9 представлены возможные варианты развития трехнейронной схемы 2.8,г. Три группы схем соответствуют редупликации различных подсистем исходной системы. Редуплицируемая подсистема обведена кружком. Первая группа (a, б, в) объясняет разрастание нулевого уровня, вторая группа (г, д, е) — первого уровня иерархии классификаторов. В третьей группе (ж, з, и, к) мы видим схемы, возникающие при редупликации одного классификатора первого уровня без связанного с ним рецептора. Переход от схемы з к схеме и объясняется тем «отсыханием» шунтированного канала, которое мы описали выше. Схема к, появившаяся в конечном счете, существенно отличается от всех остальных схем, представлявших иерархии классификаторов. В этой схеме один из классификаторов «повисает в воздухе» — он не получает информации из внешнего мира. Может ли такая схема быть полезной животному? Да: ведь это и есть схема регулирования!
Рис. 2.9. Варианты развития трёхнейронной схемы
Мы можем предположить такое, например, воплощение схемы 2.9,к. Рассмотрим некое гипотетическое животное, живущее в морской воде. Пусть R — рецептор, воспринимающий температуру окружающей среды. Вместе с ним регистрирует — путем изменения частоты импульсов возбуждения — температуру воды и классификатор A. Пусть большее или меньшее возбуждение эффектора E вызывает растяжение или сжатие оболочки животного, вследствие чего его объем изменяется, и оно либо поднимается к поверхности моря, либо опускается вглубь. И пусть для нашего животного полезнее всего какая-то определенная температура, скажем 16℃. Тогда нейрон Z (фиксатор цели) должен сохранять определенную частоту импульсов, равную той частоте, которую имеет нейрон A при температуре 16℃. Эффектор Е должен регистрировать разность возбуждений нейронов A и Z и соответственно с ее знаком поднимать животное к поверхности, где вода теплее, или погружать в более прохладные нижние слои воды. Такое приспособление премного способствовало бы благоденствию измышленного нами животного.
Редупликация различных подсистем нервной сети может породить множество различных групп классификаторов, «повисающих в воздухе». Среди них могут появиться дубликаты целых этажей иерархии, состояния которых в точности соответствуют состоянию тех «осведомленных» классификаторов, которые получают информацию от рецепторов. Соответствуют, но не совпадают. Это мы видим на примере нейронов A и Z на рис. 2.9,к. В сложных системах неосведомленные дубликаты осведомленных классификаторов могут хранить большое количество информации. Состояния этих дубликатов мы будем называть представлениями, отдавая себе ясный отчет, что тем самым мы даем определенную кибернетическую интерпретацию этому психологическому понятию. Очевидно, имеет место тесная связь между представлениями и ситуациями, которые ведь суть не что иное, как состояния аналогичных классификаторов, но получающих информацию от рецепторов. Цель представляет собой частный случай представления, а точнее тот случай, когда сравнение постоянного представления и меняющейся ситуации используется для выработки действия, сближающего их друг с другом. Описанное выше гипотетическое животное обожает температуру 16℃, и «светлый образ» этой блаженной ситуации, которая есть определенная частота импульсов нейрона A, живет в ее памяти в виде точно такой же частоты импульсов нейрона Z.