Догматический способ мышления в знании и в изучении философии есть не что иное, как мнение, будто истинное состоит в положении, которое есть прочный результат, или также в положении, которое знают непосредственно. На вопросы вроде: когда родился Цезарь, сколько футов содержалось в стадии и т. д., — ответ должен быть дан безукоризненный, точно так же как определенно истинно, что квадрат гипотенузы равен сумме квадратов двух других сторон прямоугольного треугольника. Но природа такой так называемой истины отличается от природы философских истин.
2. Историческое и математическое познание
Относительно исторических истин, — о которых упомянем вкратце, поскольку рассматривается именно их чисто историческая сторона, — легко согласиться, что они касаются единичного наличного бытия, некоторого содержания со стороны его случайности и произвола, его определений, которые не необходимы. — Но даже такие голые истины, как в приведенных нами примерах, невозможны без некоторого движения самосознания. Чтобы узнать одну из них, нужно многое сравнить, порыться в книгах, т. е. тем или иным способом произвести исследование; точно так же и при непосредственном созерцании только знание их вместе с их основаниями считается чем-то, что обладает истинной ценностью, хотя, собственно говоря, здесь как будто важен только голый результат.
Что касается математических истин, то еще в меньшей мере мог бы считаться геометром тот, кто знал бы теоремы Эвклида наизусть (auswendig), без их доказательств, не зная их, — если можно так выразиться для противоположения — внутренне (inwendig). Точно так же считалось бы неудовлетворительным знание, которое было бы приобретено путем измерения многих прямоугольных треугольников, относительно того, что их стороны находятся в известном отношении друг к другу. Однако и в математическом познавании существенность доказательства еще не имеет значения и характера момента самого результата; напротив, в нем доказательство закончилось и исчезло. Правда, теорема как результат есть нечто рассматриваемое как истинное. Но это привходящее обстоятельство касается не ее содержания, а только отношения к субъекту. Движение математического доказательства не принадлежит тому, что есть предмет, а есть действование, по отношению к существу дела внешнее. Природа прямоугольного треугольника, например, сама не разлагается так, как это изображается на чертеже, необходимом для доказательства положения, выражающего его отношение; полное выведение результата есть ход и средство познавания. — В философском познавании становление наличного бытия как наличного бытия также отличается от становления сущности или внутренней природы дела. Но философское познавание, во-первых, содержит и то и другое, тогда как математическое познавание, напротив, изображает только становление наличного бытия, т. е. бытия природы дела в познавании как таковом. Во-вторых, философское познавание объединяет и эти два особых движения. Внутреннее возникновение или становление субстанции есть прямо переход во внешнее или в наличное бытие, в бытие для другого, и, наоборот, становление наличного бытия есть возвращение в сущность. Движение есть двойной процесс и становление целого в том смысле, что в одно и то же время каждое полагает другое и каждому поэтому присуще и то и другое как два аспекта; совместно они составляют целое благодаря тому, что они сами себя растворяют и превращают себя в моменты.
В математическом познавании усмотрение есть действование, для сути дела внешнее; это следует из того, что истинная суть дела благодаря этому изменяется. Поэтому средство, т. е. чертеж и доказательство, содержит, правда, истинные положения; но точно так же надо сказать, что содержание ложно. Треугольник в вышеприведенном примере разрывают, и его части обращают в другие фигуры, возникающие благодаря чертежу. Только к концу восстанавливается тот треугольник, из-за которого, собственно говоря, и было все предпринято, но который был потерян из виду в этом процессе и был представлен только в частях, принадлежавших другим целым. — Таким образом, мы видим, что и здесь выступает негативность содержания, которую с таким же правом можно было бы называть его ложностью, как и в движении понятия — исчезновение мыслей, которые считаются установившимися.
Но в собственном смысле несовершенство этого познавания имеет отношение как к самому познаванию, так и к его материалу вообще. — Что касается познавания, то прежде всего не видна необходимость чертежа. Он не вытекает из понятия теоремы, а навязывается, и мы слепо должны повиноваться этому предписанию — провести именно данные линии, вместо которых можно было бы провести бесконечное множество иных, — ничего больше не зная, имея лишь уверенность в том, что это целесообразно для ведения доказательства. И впоследствии действительно обнаруживается эта целесообразность, которая остается только внешней по одному тому, что она обнаруживается только впоследствии при доказательстве. — Точно так же доказательство ведется путем, который где-то начинается, еще неизвестно, в каком отношении к искомому результату. В процессе доказательства принимаются данные определения и отношения и игнорируются другие, причем непосредственно нельзя усмотреть, в силу какой необходимости это делается. Этим движением управляет некоторая внешняя цель.
Очевидность этого несовершенного познавания, которой математика гордится и кичится перед философией, покоится лишь на бедности ее цели и несовершенстве ее материала, а потому это такая очевидность, которую философия должна отвергать. — Цель математики или ее понятие есть величина. А это есть как раз несущественное, лишенное понятия отношение. Движение знания совершается поэтому на поверхности, касается не самой сути дела — сущности или понятия — ив силу этого не есть постигание в понятии. — Материал, относительно которого математика обеспечивает, удовлетворяющий запас истин, есть пространство и [счетная] единица. Пространство есть наличное бытие, в которое понятие вписывает свои различия, как в пустую мертвую стихию, где они точно так же неподвижны и безжизненны. Действительное не есть нечто пространственное в том смысле, в каком оно рассматривается в математике; с такой недействительностью, каковы вещи в математике, не имеет дела ни конкретное чувственное созерцание, ни философия. Ведь в такой недействительной стихии и бывает только недействительное истинное, т. е. фиксированные, мертвые положения. На каждом из них можно прервать изложение; каждое последующее начинает для себя сначала, причем первое само не переходит ко второму, и между ними, таким образом, не возникает необходимой связи, вызываемой природой самой вещи (Sache). — Вследствие упомянутого принципа и стихии-и в этом состоит формальный характер математической очевидности — знание переходит от равенства к равенству. Ибо мертвое, так как оно само не приводит себя в движение, не доходит до различения сущности, до существенного противоположения или неравенства, не достигает поэтому и перехода противоположного в противоположное, не доходит до качественного, имманентного движения, до самодвижения. Ибо именно одну лишь величину, [т. е.] различие несущественное, и рассматривает математика. Она абстрагируется от того, что именно понятие разлагает пространство на его измерения и определяет связи между ними и в них. Она не рассматривает, например, отношения линии к плоскости, а там, где она сравнивает диаметр круга с окружностью, она наталкивается на несоизмеримость их, т. е. на некоторое отношение понятия, на нечто бесконечное, ускользающее от математического определения.