Академик H. В. Белов сосредоточил свое внимание на изучении (с тех же позиций структурной кристаллохимии) главной арены, на которой разыгрываются (все минералогические события в земной коре. Этой ареной являются силикаты. Из химического соединения элементов кремния и кислорода, составляющих в сочетании с окислами металлов основу силикатов, построено большинство горных пород. Силикаты составляют химическую основу искристых драгоценных камней, пестрых яшм, абразивов, глины, полевых шпатов. Из них изготовляют различные сорта фарфора и фаянса, создают бетон, строят плотины и заводы, дороги и мосты. В исследованиях Белова, также и во всех других направлениях «химизация геологии», теоретические завоевания, в данном случае в расшифровке природы силикатов, оказывались одновременно полезными и для развития современных методов поисков полезных ископаемых и для использования минералов в различных областях техники.
Только кристаллографические исследования, вооруженные рентгеновскими лучами и руководимые оригинальным представлением Белова о характере плотнейшей упаковки ионов разного радиуса в кристаллической конструкции, позволили расшифровать химическую структуру силикатов. Силикат, упорнее других любых веществ сопротивляющийся растворению без разложения, не давался в руки химику, который исследует структуру химических соединений чаще всего в растворах. Эти свойства силикатов обусловлены тем, что составляющие силикаты элементы способны соединяться в цепочки или даже целые «скатерти», сотканные из атомов кремния и кислорода, простирающиеся от одной грани отдельного кристалла до противоположного. Таково, например, строение слюды и подобных ей пластинчатых силикатов вроде талыка.
Для техники особенно важно уменье управлять кристаллизацией силикатов. Расшифровка кристаллической структуры этих соединений позволила объяснить принцип действия «минерализаторов» — добавок, вводимых в силикатные расплавы. В результате достигнутого с их помощью разъединения, «разрыва», уменьшения размеров кремнекислородных цепочек возрастает способность расплавов к кристаллизации.
С новой стороны подошел к выяснению физического существа сложных процессов возникновения минералов из атомов физико-химик, член-корреспондент Академии наук СССР Анатолий Федорович Капустинский. Его заинтересовало в природных процессах проявление своеобразного «соперничества» металлов между собой за обладание кислородом и серой. С этим «соперничеством» мы сталкиваемся не только в недрах земного шара, но используем его в металлургии. Очевидно, что большим сродством будет обладать тот металл, который будет активнее забирать серу или же, соответственно, кислород от менее жадных металлов[99].
При «соперничестве» и борьбе за металл серы и кислорода будет образовываться то соединение, которое является прочным, более устойчивым. В ряде остроумно поставленных исследований А. Ф. Капустинский сумел точно измерить эти силы сродства. Его работы показали, почему железо встречается в природе преимущественно в виде окисленных руд, сульфиды же встречаются в связи с железом в виде исключений. И, наоборот, почему медь дает руды по преимуществу сульфидные и лишь сравнительно редко оксидные, а серебро может давать только сульфиды, и принципиально немыслимо найти хоть какие-нибудь оксидные минералы серебра.
От общего энергетического анализа химических элементов А. Ф. Капустинский в работах, проводимых им вначале совместно с Ферсманом, а затем получившими самостоятельное развитие, перешел к количественному решению этой задачи. Каждый заряженный химический элемент наделен определенным запасом энергии, которую он выделяет, когда образует химическое соединение с другими атомами; и чем большее количество этой энергии он выделяет, тем устойчивее бывает само соединение, тем вероятнее его накопление в данных природных условиях. Но, изучая энергетику процессов образования минералов, А. Ф. Капустинский одновременно получил возможность оценивать восстановляемость тех или других руд, столь важную для правильного построения металлургических процессов.
99
Говоря строгим научным языком физико-химии, здесь сравнивается максимальная работа изотермического равновесия процесса образования сульфида или окисла, так как именно они представляют собой работу сил химического сродства, поскольку они соответствуют убыли свободной энергии реагентов.