(7.9)
Топологически это значит, что световой конус является замыканием светового гиперболоида, так что все световые точки конуса, включая точку события, являются точками прикосновения для релятивистского причинного (дискретного) мира. Гиперболоид содержит класс всех минимальных экстремалей для ненулевых геодезических. В этом смысле можно считать, что сам конус действительно является континуальным – и ровно поэтому сингулярным, а его мера Лебега тождественно равна нулю на любом интервале, . В дифференциальной геометрии гипербола и конус связаны понятием индикатрисы как касательной. Для нас гораздо важнее то, что гиперболоид является таким ограничением внутренности светового конуса, что он теперь есть ультрафильтр над множеством световых (сингулярных) точек метрики Лоренца.
Рис.12
При этом метрика принимается комплексной, а время как формальная сущность становится мнимым и симметричным, проходящим через «настоящее» мозга, так что две его стрелы проходят сквозь друг друга, а световой конус прошлого оказывается световым гиперболоидом сопряженной анти-Вселенной, между которыми стоит условие (7.9), выражающее принцип неопределенности в релятивизме. Для комплексной плоскости метрика принимает вид вектора состояния в КМ с унитарным модулем.
Для удобства обозначим световые конуса будущего и прошлого в пространстве Минковского М как и соответственно. 1-листный и 2-листный гиперболоиды выразим через и . Т.о. пространство М в метрике (2.1) состоит из двух световых конусов и s-подобной области S, а в метрике (7.8) разлагается в три области, поскольку не является односвязным.
(7.10)
Это значит, что , будучи связным, представляет собою для СТО и ОТО удаленное пространство за пределами скорости света и причинности. Но поскольку именно образует область действия нормированного векторного пространства вокруг световой точки, где волновая функция схлопывается и становятся возможными мгновенные квантовые корреляции, то и разделяют пространство М на области релятивизма и квантовой физики подобно неравенствам Белла. Иначе говоря, если мы хотим оставаться в причинном и дискретном согласно лемме 4 мире, нам не следует выходить за границы гиперболоида . Если же мы хотим работать с континуальным миром, нам придется либо получить сингулярность, либо довольствоваться квантовой неопределенностью. В общем и целом мозгу предоставлен гамлетовский выбор между бытием и небытием.
Эта ситуация напоминает сценарий мира на бране в суперструнной М-теории. В данном случае «браной» для нелокальных взаимодействий пары вселенных оказывается вакуум в треморе двух квантов времени. Речь неявным образом опять идет о вездесущем эфире с той или иной плотностью энергии. Такая модель, именно в поисках решения космологической проблемы, рассматривалась Линде в [26] путем введения совместного действия S для двух вселенных X и Y по релятивистским метрикам с противоположными по знаку лагранжианами для двух полей. При этом действие S должно обладать СРТ-симметрией для двух вселенных – симметрией антиподов (antipodal symmetry):
Если настоящее есть точка равновесия (equilibrium), то введенный для двух абсолютно идентичных миров и нормализатор N в этом случае должен быть равен единице, а суммарное действие тождественно равно нулю:
Разделение Вселенной на три части отражает и двусмысленное положение скорости света в нашем понимании, когда она для нас является конечной, а для себя и в каком-то смысле опять же для нас при нелокальных корреляциях оказывается бесконечной, как это отражено нами в (6.1). Тогда имеет место:
(1) на мировых линиях конусов V,
(2) в t-подобном не связном гиперболоиде ,
(3) в s-подобном гиперболоиде .
В релятивистском мире все физические (причинные) скорости строго меньше световой в естественной для них трактовке. Говорить здесь о сверхсветовых скоростях физически бессмысленно. Именно световые конуса отделяют релятивистский мир от мира квантовых корреляций, где свет становится мгновенным. Но и здесь, при том что , говорить о сверхсветовых скоростях бессмысленно математически (если мы не готовы принять теорию трансфинитов из расширенной континуум-гипотезы). В каком-то условном смысле мы можем считать, что все сверхсветовые скорости – это отрицательные по нашей шкале времени скорости анти-Вселенной, при условии, что они отсчитываются от как от нуля.