В таблицах сложения каждый из реальных предметов (это могут быть животные, собираемые в стадо, камни, складываемые для постройки, и т. д.) замещался идеальным объектом «единица», который фиксировался знаком I (вертикальная черта). Набор предметов изображался здесь как система единиц (для «десятков», «сотен», «тысяч» и т. д. в египетской арифметике существовали свои знаки, фиксирующие соответствующие идеальные объекты). Оперирование с предметами, объединяемыми в совокупность (сложение), и отделение от совокупности предметов или их групп (вычитание) изображались в правилах действия над «единицами», «десятками», «сотнями» и т. д. Прибавление, допустим, к пяти единицам трёх единиц производилось следующим образом: изображался знак III (число «три»), затем под ним писалось ещё пять вертикальных чёрточек IIIII (число «пять»), а затем все эти чёрточки переносились в одну строку, расположенную под двумя первыми. В результате получалось восемь чёрточек, обозначающих соответствующее число. Эти операции воспроизводили процедуры образования совокупностей предметов в реальной практике (реальное практическое образование и расчленение предметных совокупностей было основано на процедуре добавления одних единичных предметов к другим).
Используя такого типа знания, можно было предвидеть результаты преобразования предметов, характерные для различных практических ситуаций, связанных с объединением предметов в некоторую совокупность.
Способ построения знаний путём абстрагирования и схематизации предметных отношений наличной практики обеспечивал предсказание её результатов в границах уже сложившихся способов практического освоения мира. Однако по мере развития познания и практики наряду с отмеченным способом в науке формируется новый способ построения знаний. Он знаменует переход к собственно научному исследованию предметных связей мира.
Если на этапе преднауки как первичные идеальные объекты, так и их отношения (соответственно смыслы основных терминов языка и правила оперирования с ними), выводились непосредственно из практики и лишь затем внутри созданной системы знания (языка) формировались новые идеальные объекты, то теперь познание делает следующий шаг. Оно начинает строить фундамент новой системы знания как бы «сверху» по отношению к реальной практике и лишь после этого, путём ряда опосредований, проверяет созданные из идеальных объектов конструкции, сопоставляя их с предметными отношениями практики.
При таком методе исходные идеальные объекты черпаются уже не из практики, а заимствуются из ранее сложившихся систем знания (языка) и применяются в качестве строительного материала при формировании новых знаний. Эти объекты погружаются в особую «сеть отношений», структуру, которая заимствуется из другой области знания, где она предварительно обосновывается в качестве схематизированного образа предметных структур действительности. Соединение исходных идеальных объектов с новой «сеткой отношений» способно породить новую систему знаний, в рамках которой могут найти отображение существенные черты ранее не изученных сторон действительности. Прямое или косвенное обоснование данной системы практикой превращает её в достоверное знание.
В развитой науке такой способ исследования встречается буквально на каждом шагу. Так, например, по мере эволюции математики числа начинают рассматриваться не как прообраз предметных совокупностей, которыми оперируют в практике, а как относительно самостоятельные математические объекты, свойства которых подлежат систематическому изучению. С этого момента начинается собственно математическое исследование, в ходе которого из ранее изученных натуральных чисел строятся новые идеальные объекты. Применяя, например, операцию вычитания к любым парам положительных чисел, можно было получить отрицательные числа (при вычитании из меньшего числа большего). Открыв для себя класс отрицательных чисел, математика делает следующий шаг. Она распространяет на них все те операции, которые были приняты для положительных чисел, и таким путём создаёт новое знание, характеризующее ранее не исследованные структуры действительности. В дальнейшем происходит новое расширение класса чисел: применение операции извлечения корня к отрицательным числам формирует новую абстракцию – «мнимое число». И на этот класс идеальных объектов опять распространяются все те операции, которые применялись к натуральным числам.