Выбрать главу

Принципиально иную картину даёт социальная жизнь античного полиса. Её особенности создавали намного более благоприятные условия для реализации прогностических функций философии.

Античная философия продемонстрировала, как можно планомерно развёртывать представление о различных типах объектов (часто необычных с точки зрения наличного опыта) и способах их мысленного освоения. Она дала образцы построения знаний о таких объектах. Это поиск единого основания (первоначал и причин) и выведение из него следствий (необходимое условие теоретической организации знаний). Эти образцы оказали бесспорное влияние на становление теоретического слоя исследований в античной математике.

Идеал обоснованного и доказательного знания складывался в античной философии и науке под воздействием социальной практики полиса. Восточные деспотии, например, не знали этого идеала. Знания вырабатывались здесь кастой управителей, отделённых от остальных членов общества (жрецы и писцы Древнего Египта, древнекитайские чиновники и т. д.), и предписывались в качестве непререкаемой нормы, не подлежащей сомнению. Условием приемлемости знаний, формулируемых в виде предписаний, были авторитет их создателей и наличная практика, построенная в соответствии с предложенными нормативами. Доказательство знаний путём их выведения из некоторого основания было излишним (требование доказанности оправдано только тогда, когда предложенное предписание может быть подвергнуто сомнению и когда может быть выдвинуто конкурирующее предписание).

Ряд знаний в математике Древнего Египта и Вавилона, по-видимому, не мог быть получен вне процедур вывода и доказательства. М. Я. Выгодский считает, что, например, такие сложные рецепты, как алгоритм вычисления объёма усечённой пирамиды, были выведены на основе других знаний. Однако в процессе изложения знаний этот вывод не демонстрировался. Производство и трансляция знаний в культуре Древнего Египта и Вавилона закреплялись за кастой жрецов и чиновников и носили авторитарный характер. Обоснование знания путём демонстрации доказательства не превратилось в восточных культурах в идеал построения и трансляции знаний, что наложило серьёзные ограничения на процесс превращения «эмпирической математики» в теоретическую науку.

В противоположность восточным обществам, греческий полис принимал социально значимые решения, пропуская их через фильтр конкурирующих предложений и мнений на народном собрании. Преимущество одного мнения перед другим выявлялось через доказательство, в ходе которого ссылки на авторитет, особое социальное положение индивида, предлагающего предписание для будущей деятельности, не считались серьёзной аргументацией. Диалог вёлся между равноправными гражданами, и единственным критерием была обоснованность предлагаемого норматива. Этот сложившийся в культуре идеал обоснованного мнения был перенесён античной философией и на научные знания. Именно в греческой математике мы встречаем изложение знаний в виде теорем: «дано – требуется доказать – доказательство». Но в древнеегипетской и вавилонской математике такая форма не была принята, здесь мы находим только нормативные рецепты решения задач, излагаемые по схеме: «Делай так!»ѕ «Смотри, ты сделал правильно!».

Характерно, что разработка в античной философии методов постижения и развёртывания истины (диалектики и логики) протекала как отражение мира сквозь призму социальной практики полиса. Первые шаги к осознанию и развитию диалектики как метода были связаны с анализом столкновения в споре противоположных мнений (типичная ситуация выработки нормативов деятельности на народном собрании). Что же касается логики, то её разработка в античной философии началась с поиска критериев правильного рассуждения в ораторском искусстве и выработанные здесь нормативы логического следования были затем применены к научному рассуждению.