Когда в электродинамике и оптике движущихся сред физики встретились с очевидно непреодолимыми трудностями, Эйнштейн обнаружил, что эти трудности могут быть сведены к предположению, что понятие одновременности событий в различных системах отсчета имеет абсолютный смысл. Он показал, что это предположение не соблюдается в силу того факта, что скорость света, используемого для обмена сигналами (между различными системами), конечна; с помощью физических средств можно установить лишь относительную одновременность для вполне определенных (инерциальных) систем отсчета. Эта идея приводит к специальной теории относительности и к новой доктрине пространства-времени. Кантовские же идеи о пространстве и времени как об априорных формах интуиции тем самым окончательно опровергаются.
На самом же деле сомнения в идеях Канта возникли много раньше. Вскоре после смерти Канта была открыта — Гауссом, Лобачевским, Больяи — возможность построения неевклидовой геометрии.
Гаусс предпринял попытку экспериментально решить вопрос о корректности Евклидовой геометрии, измеряя углы треугольника, образованного тремя вершинами холмов Брокен, Инзельсберг, Хохе Хаген (в окрестностях Гёттингена). Но он не обнаружил отклонения суммы углов от евклидовского значения 180°. Его последователь Риман был одержим идеей, что геометрия является частью эмпирической реальности. Риман достиг важнейшего обобщения, математически разработав идею об искривленном пространстве. В эйнштейновской теории гравитации, обычно называемой общей теорией относительности, опять был использован принцип разрешимости. Эйнштейн начал с того установленного факта, что в гравитационном поле ускорение всех тел одинаково, не зависит от массы тел. Наблюдатель в замкнутом ящике может, таким образом, не распознать, чему именно обязано ускорение некоторого тела относительно ящика: гравитационному полю или ускоренному движению ящика в противоположном направлении. Из такого простого соображения и была развита грандиозная структура общей теории относительности, основным математическим аппаратом которой оказалась упомянутая выше Риманова геометрия, примененная в данном случае к четырехмерному пространству — комбинации обычного пространства и времени.
Все эти сведения я привожу для того, чтобы проиллюстрировать всю мощь и богатство принципа разрешимости. Еще одним успехом этого принципа является квантовая механика. Вспомним, в каких трудностях погрязла боровская теория орбитального движения электронов в атоме после потрясающего успеха на первых порах. И вот Гейзенберг обратил внимание на то, что теория Бора работала с величинами, которые оказались принципиально ненаблюдаемыми (с такими, как электронные орбиты определенных размеров и периодов). Гейзенберг наметил новую теорию, в которой были использованы только те понятия, действительность которых эмпирически разрешима. Эта новая механика, в разработке основ которой участвовал и я сам, ликвидировала еще одну априорную категорию Канта — причинность. Причинность классической физики всегда интерпретировалась (в том числе, несомненно, и самим Кантом) как детерминизм. Новая квантовая механика оказалась не детерминистической, а статистической (к этому я еще вернусь). Ее успех во всех отраслях физики неоспорим.
Я считаю вполне разумным применение «принципа разрешимости» и к философской проблеме возникновения объективной картины мира.
Напомним, что начали мы со скептического вопроса: неужели можно из субъективного мира чувственного опыта вывести существование объективного внешнего мира?
В самом деле, «механизм» такого вывода является врожденным и настолько естественным, что сомнения в его возможности выглядят довольно странными. Однако сомнения эти существуют, и все попытки найти решение данной проблемы — ив духе кантовской «вещи в себе», и в виде «теории отражения» — я считаю неудовлетворительными, поскольку решения эти нарушают принцип разрешимости. (С. 114-117)
В физике этот принцип объективизации хорошо известен и систематически применяется. Цвета, звуки, даже формы рассматриваются не поодиночке, а парами. Каждый начинающий физик изучает методику так называемого нулевого отсчета, например, в оптике, где настройка измерительного прибора ведется до тех пор, пока не исчезнет воспринимаемая разница (по яркости, оттенку, насыщенности) между двумя полями зрения. Показание шкалы прибора при этом означает наблюдение геометрического «равенства» — совпадения стрелки с делением шкалы. Главная часть экспериментальной физики состоит в такого рода регистрациях показаний на шкалах приборов.