Современное понимание запаха начало формироваться после того, как два французских ученых внимательно исследовали лошадиную мочу. Лошадиная моча, имевшаяся в Европе XVIII века повсеместно и в большом количестве, обладала многими важными экспериментальными характеристиками (яркий цвет, щелочные свойства и едкий запах). Наряду с Лавуазье это были самые известные французские химики того времени – Антуан Франсуа де Фуркруа (зловещим образом причастный к безвременной гибели Лавуазье) и Клод Луи Бертолле. Они выделили из мочи мочевину и идентифицировали ее в качестве источника запаха мочи[40]. Другие ученые подтвердили важность этого открытия:
Моча, когда приобретает щелочность, становится такой липкой и вязкой, что может быть разделена на длинные нити. При микроскопическом исследовании в лошадиной моче обнаруживается большое количество округлых частиц, размером от частиц слизи до вчетверо его превышающего, которые разрываются под давлением стеклянных пластинок, между которыми изучают жидкость. Фуркруа и Воклан выпарили лошадиную мочу, выделили мочевину в виде нитрата, нейтрализовали кислоту щелочью и нашли небольшое количество красноватого жира, улетучивающегося на водяной бане, который считается причиной запаха и цвета мочи[41].
В 1828 году немецкий ученый Фридрих Вёлер включил изучение запахов в общие химические исследования с помощью нового эксперимента[42]. Он синтезировал мочевину из цианата аммония (CH4N2O). Значение этого синтеза невозможно переоценить. В то время считалось, что поведение органических веществ не описывается правилами, которым подчиняется поведение неорганических веществ: органические вещества подчиняются другим законам и жизненным силам. Вёлер показал, что это не так. Он синтезировал органическое вещество – мочевину – из неорганического соединения, цианата аммония. Органическая и неорганическая химия соединились, в химии произошел сдвиг парадигмы. Это было стартовым сигналом для изучения запахов.
У запаха появилось новое материальное измерение. Шаг за шагом происходила идентификация химического состава пахучих материалов, начали активно развиваться методы синтеза сырьевых и редких материалов. В 1818 году Жак-Жюльен де Лабиллардьер определил, что терпентиновое масло (скипидар) состоит из «соотношения пяти атомов C к восьми атомам H ((C5H8)x)»[43]. Это открытие ускорило анализ состава аналогичных эфирных масел. В 1833 году Жан-Батист Дюма признал, что большинство эфирных масел имеют заметное сходство химического состава[44]. Он разделил эфирные масла на те, которые «содержат только углеводороды, такие как скипидар и лимонное масло, окисленные соединения, такие как камфорное и анисовое масло, или соединения серы (горчичное масло), или азота (масло горького миндаля)»[45]. Эжен-Мельхиор Пелиго, Юстус Либих и Отто Валлах собрали еще больше данных о составе и формулах важных для парфюмерии эфирных масел, таких как ментоловое и миндальное масла. Эти открытия происходили параллельно с развитием методов выделения различных компонентов запаха из сырьевых материалов, к числу которых относились вакуумная перегонка и дериватизация – метод для синтеза сходных по структуре веществ из конкретных химических соединений.
За пять последующих десятилетий произошел прорыв в исследованиях синтетических продуктов. В частности, катализатором этого процесса послужил синтез кумарина. Кумарин, впервые синтезированный в 1868 году, пахнет свежескошенным сеном и в природе встречается в бобах тонка (Dipteryx odorata) и в доннике, или сладком клевере (Melilotus). Кумарин был получен с помощью так называемой конденсации Перкина путем соединения салицилового альдегида (C6H4CHO-2-OH) с уксусным ангидридом ((CH3CO)2O). Сэр Уильям Генри Перкин, в честь которого названа эта реакция, также создал первый синтетический анилиновый краситель – сейчас этот розовато-лиловый цвет известен как «мов».
Становление химии ароматических и вкусовых добавок было отмечено синтезом ванилина из кониферилового спирта, осуществленным Фердинандом Тиманом и Вильгельмом Хаарманом в 1874 году. Хаарман понимал, что научный интерес к синтезу пересекается с растущими потребностями индустрии. Вскоре они с Тиманом основали собственную компанию Haarmann’s Vanillinfabrik. В последующие годы эффективность реакций росла, удовлетворяя нуждам крупномасштабного производства искусственных материалов[46]. Хаарман нанял Карла Реймера, который разработал технологию для усовершенствования синтеза ванилина. Метод Реймера оказался очень удачным[47]. Компания, переименованная в Haarmann&Reimer, быстро разрасталась (намного позже, после слияния с компанией Dragoco, эта фирма стала четвертой по величине парфюмерной компанией Symrise).
40
Antoine-François de Fourcroy, Mémoire sur l’esprit recteur de Boerhaave, Annales de chimie 26 (1798): 232.
41
Johann Franz Simon, Animal Chemistry with Reference to the Physiology and Pathology of Man, vol. 2 (London: Sydenham Society, 1846), 343.
42
Friedrich Wöhler, Ueber künstliche Bildung des Harnstoffs, Annalen der Physik und Chemie 88, no. 2 (1828): 253–256.
43
Günther Ohloff, Wilhelm Pickenhagen, and Philip Kraft, Scent and Chemistry: The Molecular World of Odors (Zürich: Wiley-VCH, 2011), 5.
44
Jean-Baptiste Dumas, Über die vegetabilischen Substanzen, welche sich dem Campher nähert und Über einige Ätherische Öle, Justus Liebigs Annalen der Chemie 6, no. 3 (1833): 245–258.
46
Ferdinand Tiemann and Wilhelm Haarmann, Über das Coniferin und seine Umwandlung in das aromatische Princip der Vanille, Berichte der Deutschen Chemischen Gesellschaft 7, no. 1 (1874): 608–623.
47
Karl Reimer, Über eine neue Bildungsweise aromatischer Aldehyde, Berichte der Deutschen Chemischen Gesellschaft 9, no. 1 (1876): 423–424.