Выбрать главу

5000 долл. = 9000 долл. /(1 +i)5

Используя финансовый калькулятор, получаем:

n

i

PV

FV

Результат

4

?

5000

-9000

i= 15,83%

Мы нашли, что i = 15,83% годовых. Вам лучше взять заем в банке.

Обратите внимание, что ставка, которую вы только что рассчитали, — это IRR займа у вашего друга. Она равна 15,83%. В предыдущих примерах мы утверждали, что правило IRR действует следующим образом; вкладывайте деньги в проект, если его IRR больше, чем альтернативная стоимость капитала. Это правило применимо в случае, если особенностью проектов является одноразовое вложение (т.е. начальный денежный поток — отрицательный, а будущие потоки — положительные).

Однако должно быть совершенно понятно, что для проектов, в которых речь идет о займе (т.е. начальный денежный поток положительный и будущий денежный поток, предназначенный для выплаты долга, отрицательный) это правило должно быть перевернуто с ног на голову: "Берите в долг там, где IRR по займу меньше, чем альтернативная стоимость капитала".

Как было отмечено ранее, главная потенциальная проблема с правилом IRR может возникнуть там, где есть множественные денежные потоки. В таких случаях IRR может быть не одна или IRR может вообще не быть. Более подробно об этой проблеме мы расскажем дальше.

4.5. МНОЖЕСТВЕННЫЕ ДЕНЕЖНЫЕ ПОТОКИ

Рабочая книга До сих. пор мы рассматривали ситуации, в которых имелся один денежный поток в будущем. Что происходит, если их больше одного? Предположим, что вы хотите отложить деньги на обучение ребенка в колледже 4.3-4.6 или обеспечить себе старость, откладывая каждый год определенную сумму на банковский счет, на который, начисляются проценты. Или же вы подходите к облигации как такому виду инвестиций, который способен обеспечить денежный поток будущих выплат, или думаете о том, чтобы взять заем в банке, что потребует от вас периодических выплат для его погашения. Для того чтобы знать, как вести себя во всех этих более сложных ситуациях, нам нужно только немного расширить рассмотренные концепции.

4.5.1. Временные графики

Полезным инструментом при анализе потоков наличности во времени является временной график (time line), приведенный на рис. 4.4.

Знак "минус" перед денежным потоком означает, что вы вкладываете эту сумму денег (исходящий поток), в то время как отсутствие знака говорит о том, что вы получаете эту сумму (входящий поток). В нашем примере вы инвестируете 100 в начале (точка 0 на графике) и получаете 20 в конце первого периода, 50 — в конце второго, и 60 — в конце третьего.

4.5.2. Будущая стоимость нескольких денежных потоков

Мы начинаем анализ с примера о сбережениях, опираясь на концепцию будущей стоимости. Итак, каждый год вы кладете 1000 долл. на счет, по которому выплачивается 10% годовых, начиная с момента вклада. Сколько денег у вас будет через два года, если до истечения этого срока вы не снимете со счета ни цента?

Начальные 1000 долл. вырастут до 1100 долл. к концу первого года. Затем вы добавите еще одну 1000 долл., и у вас на счете к началу второго года будет 2100 долл. К концу второго года на вашем счете будет 1,1 x 2100 долл., или 2310 долл.

Будущую стоимость 2310 долл. можно найти и другим способом. Для этого мы отдельно рассчитываем будущую стоимость первых двух вкладов по 1000 долл. и затем складываем полученные значения. Будущая стоимость первого вклада равняется:

1000 долл. х 1,12 = 1210 долл.

Будущая стоимость второго вклада составит:

1000 долл. х 1,1 = 1100 долл.

Сложив полученные величины, мы получим те же самые 2310 долл., к которым мы пришли путем умножения ежегодных поступлений на 1,1.

Контрольный вопрос 4.6

Предположим, вы положили в банк 1000 долл. сейчас, и еще 2000 долл. через год. Сколько денег у вас будет через два года, если процентная ставка равна 10% годовых?

Рис. 4.5. Приведенная стоимость множественных денежных потоков

4.5.3. Приведенная стоимость нескольких денежных потоков

Зачастую нам необходимо рассчитать именно приведенную, а не будущую, стоимость ряда денежных потоков. Предположим, вы хотите получить 1000 долл. через год, а затем 2000 долл. через два года. Если процентная ставка составляет 10% годовых, сколько вам нужно положить на счет сегодня для того, чтобы удовлетворить ваши запросы?

В этом случае мы должны рассчитать приведенную стоимость двух денежных потоков, показанных на рис. 4.5. Поскольку будущая стоимость суммарных денежных потоков равна сумме будущей стоимости каждого из них, точно так же определяется и приведенная стоимость.

4.5.4. Инвестирование в случае с множественными денежными потоками

Предположим, у вас появилась возможность вложить деньги в проект, отдача от которого составит 1000 долл. через год и еще 2000 долл. через два года. От вас требуется вложить 2500 долл. Вы убеждены в том, что проект совершенно лишен риска. Стоит ли вкладывать деньги в этот проект, если вы просто можете положить их на депозит в банке под 10% годовых?

Обратите внимание, что эта задача очень похожа на предыдущую. Денежные потоки, вызванные реализацией этого проекта, будут такие же, как и изображенные на рис. 4,5 — 1000 долл. через год и 2000 долл. через два года- Мы уже знаем, что если вы положите свои деньги в банк, то вам понадобится 2562 долл. для того, чтобы получить оговоренные в нашей задаче будущие поступления средств. Ввиду того что инвестиции, необходимые для начала реализации этого проекта, составляют всего 2500 долл., их чистая приведенная стоимость равна 62 долл. Отсюда следует, что, как уже упоминалось в этой главе, инвестиция с положительной NPV выгодна. Следовательно, это предложение имеет смысл принять.

4.6. АННУИТЕТЫ

Часто в сберегательных схемах, инвестиционном проекте или схеме возврата кредита будущие денежные поступления или выплаты (т.е. положительные или отрицательные денежные потоки) остаются неизменными из года в год. Такого рода ряд постоянных поступлений или выплат денег называется аннуитетом, или рентой (annuity). Этот термин пришел к нам из сферы страхования жизни, в которой договором аннуитета называется договор, гарантирующий покупателю ряд выплат за определенный период времени. В финансах этот термин применяется по отношению к любому количеству денежных платежей. Таким образом, ряд платежей по рассрочке или ипотечному договору также называется аннуитетом- Если денежные платежи начинаются немедленно, как это присуще сберегательному плану или аренде, такой договор называется срочным или немедленным аннуитетом (immediate annuity). Если денежный поток начинается в конце текущего периода, а не немедленно, такой договор называется обычным аннуитетом (ordinary annuity). Ипотека является примером обычного аннуитета. Существуют более удобные формулы, таблицы и функции калькулятора для расчета будущей и приведенной стоимости аннуитета, которые могут пригодиться, когда несколько денежных потоков распределены по многим периодам.

4.6.1. Будущая стоимость аннуитета

Предположим, вы намерены откладывать по 100 долл. каждый год на протяжении следующих трех лет. Сколько денег у вас накопится к концу этого периода, если процентная ставка равна 10% годовых? Если вы начнете откладывать деньги сразу, у вас будет:

FV=100 долл. х 1,13+100 долл.х 1,12 +100 долл. х 1,1

Вынесем за скобки фиксированную величину денежных расходов в размере 100 долл. и получим:

FV=100 долл. х (1,13+1,12 +1,1)

Полученный результат — 364,10 долл. — как раз и является будущей стоимостью ежегодных платежей. Коэффициент, на который умножается 100 долл., представляет собой будущую стоимость 1 долл. годового платежа для каждого года из трех лет. Хотя в таблицах есть коэффициенты будущей стоимости для разных процентных ставок и количества периодов, сегодня многие предпочитают пользоваться финансовыми калькуляторами. Клавиша калькулятора, предназначенная для ввода значения периодических платежей, на большинстве моделей обозначена РМТ (сокращение от payment).