Выбрать главу

2 – равновесный процесс;

3 – несамопроизвольный процесс.

Совершается работа за счет ΔU и ΔH.

Противодействующие факторы. Энтальпийный фактор характеризует силу притяжения молекул. Энтропийный фактор характеризует стремление к разъединению молекул.

Энтальпия – Н Внутренняя энергия – U.

H = U + PV,

dH = dU + pdv + vdp,

U = TS – PV,

dU = TdS – SdT + pdV + Vdp,

dH = –pdV + pdV + Vdp; U = TdS + VdP.

Рис. 6

где 1 – самопроизвольный процесс,

2 – несамопроизвольный процесс,

3 – равновесный процесс,

(dH)P,T ≤ 0,

(dU)S,T ≤ 0.

Уравнения Гиббса – Гельмгольца – уравнения максимальной работы.

Они позволяют установить связь между максимальной работой равновесного процесса и теплотой неравновесного процесса

уравнение Гельмгольца (уравнение связывающее функции F и G с их температурными производными).

уравнение Гиббса (уравнение связывающее функции F и G с их температурными производными).

Уравнения эти дают возможность рассчитать работу через температурный коэффициент функции Гельмгольца или через температурный коэффициент функции Гиббса.

Уравнение Клаузиуса-Клапейрона

Оно позволяет применить второй закон термодинамики к фазовым переходам. Если рассчитать процессы, в которых совершается только работа расширения, то тогда изменение внутренней энергии

U2 – U1 = T(S2 – S1) – P(V2 – V1),

(U1 – TS1 + PV1) = (U2 – TS2 + PV2),

G1 = G2в условиях равновесия.

Предположим, что 1 моль вещества переходит из первой фазы во вторую.

I фаза => dG1 = V1dp – S1dT.

II фаза => dG2= V2dp – S2dT, при равновесии dG2 – dG1 =

dG2 – dG1 = dp(V2 – V1) – dT(S2 – S1) –

нет условного равновесия,

где dP/dT – температурный коэффициент давления,

где λфп – теплота фазового перехода.

уравнение Клаузиуса-Клапейрона, дифференциальная форма уравнения.

Уравнение устанавливает взаимосвязь между теплотой фазового перехода, давлением, температурой и изменением молярного объема.

эмпирическая форма уравнения Клаузиуса-Клапейрона.

Рис. 7

Рис. 8

Уравнение Клаузиуса-Клапейрона изучает фазовые переходы. Фазовые переходы могут быть I рода и II рода.

I рода – характеризуются равенством изобарных потенциалов и скачкообразными изменениями S и V.

II рода – характеризуются равенством изобарных потенциалов, равенством энтропий и равенством молярных объемов.

I рода – ΔG = 0, ΔS ≠ 0, ΔV ≠ 0.

II рода – ΔG = 0, ΔS = 0, ΔV = 0.

Алгебраическая сумма приведенных теплот для любого обратимого кругового процесса равна нулю.

Эта подынтегральная величина – дифференциал однозначной функции состояния. Эта новая функция была введена Клаузиусом в 1865 г. и названа энтропией – S (от греч. «превращение»).

Любая система в различном состоянии имеет вполне определенное и единственное значение энтропии, точно так же, как определенное и единственное значение Р, V, Tи других свойств.

Итак, энтропия выражается уравнением:

где S – это функция состояний, изменение которой dSв обратимом изотермическом процессе перехода теплоты в количество Q равно приведенной теплоте процесса.

При независимых переменных U (внутренняя энергия) может обозначаться UВН и V (объем), или Р (давление) и Н(энтальпия). Энтропия является характеристической функцией. Характеристические функции – функции состояния системы, каждая из которых при использовании ее производных дает возможность выразить в явной форме другие термодинамические свойства системы. Напомним, в химической термодинамике их пять:

1) изобарно-изотермический потенциал (энергия Гиббса) при независимых переменных Т, Р и числе молей каждого из компонентов и.;

2) изохорно-изотермический потенциал (энергия Гельмгольца) при независимых переменных Т, V, ni;

3) внутренняя энергия при независимых переменных: S, V, ni;

4) энтальпия при независимых переменных: S, Р, пi;

5) энтропия при независимых переменных Н, Р, ni..

В изолированных системах (U и V= const) при необратимых процессах энтропия системы возрастает, dS > 0; при обратимых – не изменяется, dS = 0.

Связь энтропии с другими термодинамическими параметрами

Для того, чтобы решить конкретную задачу, связанную с применением энтропии, надо установить зависимость между ней и другими термодинамическими параметрами. Уравнение dS = δQ/T в сочетании с δQ = dU + PdV и δQ = dH – VdP дает уравнения:

dU = TdS – PdV,

dH = TdS + VdP.

Записав уравнение:

применительно к функциональной зависимости φ(Т, V, S) = 0, получим

т. е.

Теперь найдем зависимость энтропии от температуры из уравнений:

и

Вот эти зависимости:

и

Эти два уравнения являются практически наиболее важными частными случаями общего соотношения:

TdS = CdT.

Пользуясь разными зависимостями, можно вывести другие уравнения, связывающие термодинамические параметры.

Самопроизвольные – процессы, которые идут сами собой, на них не затрачивается работа, они сами могут производить ее (движение камней в горах, натрий с большой скоростью движется по поверхности, так как идет выделение водорода), а калий буквально «прыгает» по воде.

Несамопроизвольные – процессы, которые не могут идти сами собой, на них затрачивается работа.

Равновесие делится на устойчивое, неустойчивое и безразличное.

Постулаты второго закона термодинамики.

1. Постулат Клаузиуса – «Не может быть перехода тепла от менее нагретого к более нагретому телу».

2. Постулат Томсона – «Теплота наиболее холодного тела не может служить источником работы».

Теорема Карно-Клаузиуса: «Все обратимые машины, совершающие цикл Карно с участием одного и того же нагревателя и одного и того же холодильника, имеют одинаковый коэффициент полезного действия, независимо от рода рабочего тела».

Аналитические выражения второго закона термодинамики.

1. Классическое уравнение второго закона термодинамики