Выбрать главу

Вкратце и поумнее: напряжённость электрического поля - это сила, с которой поле действует на единичный точечный заряд, в нём находящийся. E = F/q, где E - напряжённость электрического поля, F - сила, с которой оно действует; q - заряд, на который оно действует. Единица измерения - В/м. Силовые линии электрического поля - это линии, касательные к которым совпадают по направлению с вектором напряжённости в точке касания. Электрические силовые линии не пересекаются, начинаются на положительных зарядах и оканчиваются на отрицательных. Однородное электрическое поле - поле, в каждой точке которого вектор напряжённости одинаков по величине и направлению. Силовые линии однородного электрического поля - параллельные прямые. Напряжённость поля, создаваемого точечным зарядом: E = k*q/(r^2), где k - тот же экспериментальный коэффициент, что и в законе Кулона (1/(4пи*эпсилон0) = 9*10^9 Н*м^2/(Кл^2)), q - заряд, поле которого считаем, r - расстояние от заряда до той точки, в которой считаем значение напряжённости. При действии нескольких полей их напряжённости векторно складываются (принцип суперпозиции) - результирующая напряжённость является векторной суммой всех составляющих напряжённостей. С точки зрения действия поля вещества можно разделить на проводники и диэлектрики. У проводников имеются свободные заряды, которые могут реагировать на электрическое поле, у диэлектриков таких зарядов крайне мало (можно считать, что нет вообще).

Вот уже столько всего заумного понаписывал, а зачем? Всё тот же вопрос вертится в голове: ну зачем всё это надо?! Ответ кроется в том, что обзывают основной задачей электростатики: раз уж мы предполагаем, что у нас всё электрическое летает в электрическом поле, то в идеале нужно знать, какое это поле будет в каждой из всех точечек пространства. А чтобы знать, "какое будет поле", надо знать, выражаясь умным языком, две его характеристики: силовую и энергетическую составляющую: то есть знать, с какой силой поле будет гонять зарядики туда-сюда, и какую энергию зарядики при этом будут иметь. Зная две эти вещи, можно считать уже всё остальное. Силовая характеристика - это напряжённость, а энергетическая будет в этом абзаце.

Где-то в начале я обронил словцо на тему, что электрическое поле может не только действовать грубой силой, но ещё и переносить энергию. Силовую часть я обсосал до косточек и скрутил в трубочку в предыдущем абзаце, теперь то же самое с энергетической частью. Которая, тьфу-тьфу, попроще - тут не будет этих страшных векторов и непонятных линий, ведущих не то наполовину из ниоткуда, не то наполовину в никуда. Вообще говоря, силы электрического взаимодействия тоже могут совершать работу, притом электрическое поле потенциально (работа электрических сил не зависит от траектории движения, а определяется только начальным и конечным положением тела - так, например, если вернуть зарядик в ту же точку, из которой он стартовал, то "электрическая" работа будет равна нулю). Вообще говоря, именно поэтому у любого заряда, на который действует электрическое поле, имеется энергия, вне зависимости от того, стоит он на месте или летит. Если вспомнить механику, то можно сообразить, что эта энергия - всего лишь потенциальная, то бишь энергия взаимодействия. Но - опять-таки - разные заряды (и необязательно точечные - снова вспоминаем, что в жизни есть и заряженные туловища) могут иметь одну и ту же энергию. Чтобы и здесь убрать зависимость от заряда, ввели вторую характеристику поля - потенциал. Обозначают буквой фи, равен он Eп/q. Eп - потенциальная энергия, которой обладает заряд в поле (опять-таки, не имеет значения, движется он или стоит - на кинетическую энергию тут начхать, судя хотя бы по названию величины), делённая на значение этого заряда. Единица его - Дж/Кл - названа очень знакомым словом. Вольт. Как раз отсюда легко сообразить, что Н/Кл, в которых якобы должны мерить напряжённость, - это и есть В/м: Н/Кл = Дж/(м*Кл) = В/м.

И всё бы хорошо, да обычно потенциал какой-то одной точки считать особого смысла нет - мы и так можем знать и энергию, и заряд, нафига нам париться чем-то ещё? А вот когда этот заряд перетаскивается полем из одной точки в другую, вот тут уже потенциал становится важнее. Только уже не он сам, а разность потенциалов между конечной и начальной точками. Это будет работа, которую совершила электрическая сила, чтобы переместить заряд из одной точки в другую, делённая на величину этого заряда. Более простыми словами разность потенциалов обозначается ещё одним до боли знакомым словом - электрическое напряжение. Только, правда, его используют не в абстрактных рисунках с точечками и линиями, а в реальных электрических цепях (и с маленькой поправочкой), но, по сути, разность потенциалов и напряжение - это одно и то же. Напряжение можно связать с напряжённостью (теперь бы не перепутать одно с другим! Напряжённость - вектор, по касательной к ней идут все эти страшные силовые линии, а напряжение - это просто безобидное число, говорящее о том, насколько большую энергию тратит поле на переезд зарядика с одного места в другое): в самом простом случае, если поле однородно, E = дельтафи/d. E - напряжённость в одной из точек, дельтафи - разность потенциалов между двумя точками (E будет одинакова в обеих, так как поле однородное), d - расстояние между точками (в самом простом случае; а так это проекция перемещения на силовую линию... лучше всего забыть эти страшные слова, их произношение ни к чему хорошему не приведёт). Но, вообще говоря, одно с другим связывается гораздо сложнее, просто в школьной физике этим стараются голову не забивать - и без того уже мозги кипят.