Самая низкая частота - до десятков тысяч герц - это так называемые длинные волны. Толку с них особо нет, особо не применяются. Длина таких волн - от бесконечности до единиц километров. Повыше начинаются уже радиоволны, которые используются в разных отраслях радиосвязи, это примерно от сотен килогерц до сотен мегагерц. (Цифры перед обозначением FM в частоте радио означают не частоту в кило- или мегагерцах, это просто обозначение на условной шкале, принятой для радиовещания - диапазон частот, который используется "от" и "до", указывают "сверху", с государства.) Сюда входит всё, начиная связью по ручной мини-рации, продолжая телевидением и заканчивая частотами военных раций. От сотен мегагерц до единиц гигагерц начинаются волны длиной порядка дециметра (10 см), после них начинается СВЧ-диапазон ("СВЧ" означает "СверхВысокие Частоты") - волны на этих частотах держат на себе мобильную связь, беспроводной интернет, помогают греться еде в микроволновке и используются в радарах. Так продолжается до единиц терагерц (длина волны от 1 мм до 0.1 мм). На ещё более высоких частотах в герцах перестают считать, используют больше длину волны. Так, примерно с 1.5 ТГц, или 2000 мкм (микрометров), условно начинают отсчитывать так называемое инфракрасное излучение. Оно не красное, как любят показывать в рекламах или научно-фантастических фильмах! Оно тоже невидимое, как и все предыдущие электромагнитные волны. Такие волны возникают, если тело просто нагрето. Это обыкновенное тепловое излучение. Да-да, когда ты греешь еду на плите и, держа руку над ней, чувствуешь тепло, это в руку вонзаются электрическое и магнитное поля! Дальше ещё веселее. Примерно на 740 нм (нанометров, это одна тысячная микрометра, или одна миллиардная (10^-9) метра) излучение начинает быть... видимым! Это тот самый свет, который мы видим. Красненький - самая большая длина волны, фиолетовый - самая маленькая. Белый свет - это смесь всех цветов радуги (красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый; причём голубой и синий цвета часто объединяют в синий), то есть куча-куча электромагнитных волн с кучей разных длин. Так продолжается примерно до 380 нм, когда фиолетовый свет потихоньку снова становится невидимым и превращается в ультрафиолетовый (примерная аналогия со звуком: "инфра"красный - значит "до красного", "ультра"фиолетовый - значит "после фиолетового"). Это излучение уже обладает такой энергией, что способно убивать бактерии (ультрафиолетом, к примеру, можно обеззараживать воду). Ближе к десяткам нанометров ультрафиолет становится настолько ядрёным, что своей энергией способен оторвать электрончик от атома, и излучение с длиной волны меньше, чем ультрафиолет, называют ионизирующим (ионизация - это и есть отрыв электрончика от атома). Таких видов излучений именно электромагнитного происхождения известно пока два: это рентгеновское и гамма-излучение. Рентгеновское излучение простирается по длинам волн от десятков нанометров до сотых долей нанометров, гамма - всё, что ниже сотых долей нанометров. Считается, что рентген получают на специальных аппаратах - рентгеновских трубках, а гамма-лучи получаются в результате внутриатомных разборок. Каких именно - это вопросы к атомной и ядерной физике, о которых в самом конце. (Радиация - это тоже ионизирующее излучение, но это не один поток лучей, а тоже целый "букет", набор разношёрстных гадостей, каждая из которых ионизирует по-своему, и не все из них - электромагнитные волны. Об этом тоже ближе к концу.)
Чётких границ между всей этой кучей диапазонов, строго говоря, нет. Электромагнитную волну длиной 10 нм ровно можно одинаково отнести как к ультрафиолету, так и к рентгену.
Вкратце и поумнее: колебательный контур - это электрическая цепь, состоящая из конденсатора и катушки индуктивности. При сообщении конденсатору заряда в контуре возникают электромагнитные колебания. Период этих колебаний составляет: T = 2пи*корень квадратный из (L*c). Активное сопротивление в цепи переменного тока показывает, какое количество энергии будет потеряно в виде тепла. Считается так же, как сопротивление проводника на постоянном токе (R = ро*l/S). Конденсатор и катушка имеют реактивное сопротивление. Емкостное сопротивление равно: Xc = 1/(w*c), где w - циклическая частота колебаний контура, c - ёмкость конденсатора; индуктивное сопротивление составляет: XL = w*L, где w - циклическая частота колебаний контура, L - индуктивность катушки. Резонанс в колебательном контуре - это увеличение частоты вынужденных колебаний контура при совпадении собственной частоты этих колебаний с частотой колебаний, их поддерживающих. При резонансе реактивные сопротивления катушки и конденсатора равны, резонансная частота считается по формуле w = 1/корень квадратный из (L*c). Электромагнитная волна - колебания электрического и магнитного полей, распространяющиеся в пространстве. Скорость распространения электромагнитной волны в воздухе примерно равна скорости света - 3*10^8 м/с, обозначается буквой c. Принципы радиосвязи: получение незатухающих электромагнитных колебаний, модуляция этих колебаний полезным сигналом, распространение электромагнитной волны на расстояние, приём электромагнитной волны, демодуляция полученных электромагнитных колебаний, наслаждение полученным результатом.