Выбрать главу

Фиг. 151. Тело на наклонной плоскости.

а — в состоянии покоя; б — движение по наклонной плоскости.

Если перерезать веревку, то тело начнет двигаться с ускорением вниз по наклонной плоскости; мы можем считать, что остальные силы — земное притяжение W и реакция опоры Р — не меняются. В таком случае, если силы W и Р раньше уравновешивали силу F, то их сумма должно быть равна —F, т. е. должна представлять собой силу F, направленную вниз по наклонной плоскости. Таким образом, мы можем считать, что тело, свободно скользящее по наклонной плоскости, ускоряется под действием силы F, направленной вдоль наклонной плоскости и такой, что

F/W = h/L, или F = Wh/L

Отношение h/L постоянно по всей наклонной плоскости. Поэтому для любой данной наклонной плоскости сила F одна и та же по всей длине; такие эксперименты, как опыт со скатывающимся колесом, показывают, что эта постоянная сила создает постоянное ускорение, направленное вдоль наклонной плоскости[95]. Если изменить наклон, то изменится сила, действующая на тело вдоль наклонной плоскости, и изменится его ускорение.

Галилей изучал движение тел по различным наклонным плоскостям и пришел к выводу, что их ускорение[96] изменяется прямо пропорционально отношению h/L[97]. В таком случае

УСКОРЕНИЕ, направленное ВДОЛЬ НАКЛОННОЙ ПЛОСКОСТИ = (Постоянная)∙h/L

СИЛА F, направленная ВДОЛЬ НАКЛОННОЙ ПЛОСКОСТИ = (Земное притяжение W)∙h/L

Итак, ускорение изменяется в такой же пропорции, что и результирующая сила. Таким образом, Галилей создал прочную базу для вывода общего правила

УСКОРЕНИЕ ~ РЕЗУЛЬТИРУЮЩАЯ СИЛА,

которое Ньютон включил в свой второй закон. Это было открытием огромной важности. Еще до Галилея к этому выводу пришли ученые, но он не был ясно сформулирован. Он представляет собой основное соотношение между силой и движением, описывающее движение снарядов, планет, электронов, ракет, поездов, деталей машин и т. д.

Общее соотношение

Многочисленные наблюдения — от приближенных измерений времени, приведенных Галилеем, до косвенных данных из астрономии и современной баллистики — позволяют получить общее соотношение. Если на тело действует постоянная результирующая сила, то тело движется с постоянным ускорением. При удвоении или утроении силы ускорение возрастает в такой же пропорции:

При неизменной массе

УСКОРЕНИЕ ~ СИЛА, или СИЛА ~ УСКОРЕНИЕ.

С другой стороны, чтобы сообщить одно и то же ускорение удвоенной или утроенной массе, необходимо приложить соответственно удвоенную и утроенную силу.

При неизменном ускорении

СИЛА ~ МАССА.

Объединяя оба вывода, можно записать[98]

СИЛА ~ МАССА∙УСКОРЕНИЕ,

F = K∙Ma

Соотношение F = K∙Ma, согласно которому

РЕЗУЛЬТИРУЮЩАЯ СИЛА = (ПОСТОЯННАЯ)∙МАССА∙УСКОРЕНИЕ,

представляет собой обобщенную формулировку, выражающую движение тел с ускорением. Наши демонстрационные опыты не доказывают, что она верна, но они иллюстрируют ее и вносят свою лепту в доказательство ее правильности. Соотношение F = K∙Ma — это наш вариант записи второго закона Ньютона, который мы сформулируем позже. Мы пользуемся этим соотношением для расчета реальных сил: силы реакции пола, которую мы испытываем при прыжке; силы, действующей на автомашину при столкновении; давления газа на стенки сосуда; силы, с которой Земля притягивает Луну. Сначала сделаем несколько замечаний относительно массы и силы (и веса), а потом покажем, как записать соотношение F = K∙Mв более простой форме, удобной для вычислений.

Масса и сила

Мы смело рассуждали о массе, но дали ли мы ее недвусмысленное научное определение? Предположим, известно, что сила — это знакомое всем толкающее или тяговое усилие, и мы допускаем, что две одинаковые пружины создают силу, вдвое большую, чем одна пружина; тогда можно сказать, что нам известна сила F и ускорение а, входящее в соотношение F = K∙Ma. Значит, можно охарактеризовать массу как некую величину, пропорциональную отношению F/a, поскольку F/a = K∙M. Чем больше масса, тем большую силу нужно приложить, чтобы сообщить ей некоторое ускорение. С другой стороны, чем больше масса, тем меньшее ускорение придает ей определенная сила.

вернуться

95

Если вы намерены стать осторожным физиком, избегайте пагубного слова «создает». Все, что мы на самом деле знаем, это то, что силы и ускорение сопутствуют друг другу. Во многих случаях не удается независимым образом показать, что действует сила, просто мы считаем, что сила действует, поскольку наблюдается ускорение.

вернуться

96

Качение шара вносит одно осложнение, о котором мы умолчали, поэтому для исследования этой зависимости между силой и ускорением мы пользуемся скольжением тел по наклонной плоскости «без трения» или наблюдаем движение тележки по рельсам. В последнем случае тележка движется прямолинейно, и лишь ее колеса вращаются.

вернуться

97

Предположим, у нас имеется несколько наклонных плоскостей одинаковой высоты h, но с разным наклоном, и движение по ним происходит без трения (фиг. 152).

вернуться

98

Не так уж просто заметить, что зависимости ~ а и ~ М можно объединить В формулу F = K∙Mа. Вспомним, что первые две формулировки содержат некоторые условия. Первая гласит: «F ~ а при неизменной массе М». Но если М постоянна, то мы сможем записать более общую формулу F = K∙Mа.

Таким образом,

F = (K∙M)∙а = (Постоянная)∙а,

т. е. F ~ a.,

Следовательно, формула F = K∙Mа включает утверждение «F ~ a, если М постоянна».

Второе утверждение гласит, что F ~ М, если ускорение а неизменно. Но если а остается неизменным, то мы можем записать формулу F = K∙Mа следующим образом:

F = (K∙M)∙а = (Постоянная)∙М,

т. е. F ~ M.

Следовательно, формула F = K∙Mа включает зависимости F ~ а и F ~ M при определенных условиях: